
乘法运算定律教学设计
作为一名人民教师,常常要写一份优秀的教学设计,教学设计是实现教学目标的计划性和决策性活动。优秀的教学设计都具备一些什么特点呢?下面是小编精心整理的乘法运算定律教学设计,仅供参考,希望能够帮助到大家。
乘法运算定律教学设计 篇1教学目标:
1、经历乘法运算定律的猜想、验证过程。理解和掌握乘法交换律、乘法结合律(含用字母表示);
2、能灵活应用乘法交换律和结合律进行简便计算,解决实际问题;
3、猜想、验证、应用的过程中,培养学生自主学习的能力,发展学生学以致用的意识。使学生受到科学方法的启蒙教育。
教学过程:
一、比赛激趣,引发猜想
1、谈话:在数学课堂中,大家都非常欣赏思维敏捷,反应快的同学,下面就给大家一个机会,我们进行一次计算比赛,看哪位同学最先博得大家的欣赏!
2、教师报题,学生起立抢答。
3、大家的速度都很快,很难分出高下,下面换一种比赛形式。
(课件演示:一次性计算两道题,看谁算得既对又快。)
4、启发猜想:这几天我们在学什么计算题,(笔算乘法)感觉怎样?联系刚才我们做的两题加法,你想到了什么?
5、引导猜想:a、乘法中可能也有交换律和结合律;
b、猜想怎么用字母来表示它们。
{板书猜想结果:乘法交换律乘法结合律
二、合作探究,举例验证
1、引导验证方法:老师为什么要在等号上加“?”!谁有办法把问号去掉?
请学生当即举一个乘法交换律的例子。(板书:学生所举例子,注:举例证明)
质疑:举一个例子能证明这个运算定律的正确性吗?(可能是巧合)
那怎么办?需要凝聚大家的力量一起举例!
2、小组合作验证
3、归纳两条乘法运算定律的文字叙述内容,揭示课题。
三、学以致用,加强巩固
四、课堂小结,拓展延伸
本课的`设计体现了以下几个特点:
1、创造性地运用教材,落实“三维”教学目标。
按照教参中的教学进程安排,乘法交换律和结合律需要分两课时完成。笔者认为将两课时合并为一课时,可以达到事半功倍的效果。首先,加法的交换律和结合律与乘法的交换律和结合律比较相似,由两条加法定律猜想到两条乘法定律,难度不大,十分自然。其次,两条乘法定律一起学,一方面有利于比较区分;另一方面,更利于实际应用,事实上在计算应用中,这两条定律通常是结合在一起应用的。
2、经历过程,强化体验,落实“三维”教学目标。
从猜想→验证→应用的整个教学过程中,教师只是适当的启发、引导、参与。更多的是学生自发的学习,是学生感觉学习知识的需要而展开学习。如:由加法的简算快捷而受启发联想到乘法要是也有运算定律进行简算该多好!从而激起探索新知的渴望。再如:当体会到举一个例子无法验证说明问题,需要举更多的例子时,让学生考虑怎么办?从而讨论解决方法:大家一起举例。再如:得出结论后,当然想到拿学习成果应用于实际。这比由老师步步安排好学习步骤要好得多,不仅培养了学生的自主学习意识,而且学生的参与积极性也会高涨。
3、科学思想和方法的渗透,落实“三维”教学目标。
在数学知识领域内,“猜想→验证→结论”是十分有效的思考研究方法。有利于学生思维的发展和今后的学习。同时,在验证环节中涉及到常见的证明方法——举例证明。同时渗透了偶然和必然之间的辨证关系。总体上说:这节课的设计很好地体现了学生的自主性,给学生较大的自主探索空间,体现了数学逻辑思维的严谨美,训练了学生的思维。
乘法运算定律教学设计 篇2使用说明及学法指导:
1、结合问题自学课本第12页,用红笔勾画出疑惑点;独立思考完成书上填空,并发现理解简算方法。
2、针对自主学习中找出的疑惑点,课上小组讨论交流,答疑解惑。
学习目标:
1、使学生理解整数乘法的运算定律对于小数同样适用;
2、并会运用乘法的运算定律进行一些小数的`简便计算。
3、在自主探究、合作学习中体验成长乐趣。
学习重点:乘法运算定律中数(包括整数和小数)的适用范围。
学习难点:运用乘法的运算定律进行小数乘法的的简便运算。
一、自主学习
任务:整数乘法运算定律推广到小数乘法的简便算法
1、想一想,我们学过哪些乘法运算定律?请用字母表示出来。
乘法交换律 ab=ba
乘法结合律 a(bc)=(ab)c
乘法分配律 a(b+c)=ab+ac
2、认真观察P.12三组中的每两个算式,在书上填出左右两边的关系。
3、上面的算式,应用了哪些运算定律?
4、试着在书上完成例8,想一想,每一步应用了哪些运算定律?
5、练一练:P.12页的“做一做”。
任务:探究小数乘整数的计算方法(课内):
1、你会填吗?根据什么定律填的?
4.2×1.69=□×□
2.5×(0.77×0.4)=(□×□)×□
6.1×3.6+3.9×3.6=(□+□)×□
2、阅读教材第12页例8。理解:计算0.25×4.78×4时,先将4.78和4交换位置,计算出0.25×4的积后,将积与4.78相乘得4.78较简便。这是根据 ;065×(200+1)=0.65×200+0.65×1这是根据 。
3计算2.5×18时,先把18写成 + ,再根据乘法分配律得出2.5×18= × + × 。就得到2.5×18= 较简便。
3、简算:4.8×0.25 7.5×104 2.33×1.25×8
二、合作探究、归纳展示(小组合作完成下列各题,一组展示,其余补充、评价)
1、小数乘整数乘法的 ,对于小数乘 法 。
2、简算:
2.5×33×4 3.6×0.8+0.8×6.4
12.7×10.8-2.7×10.8
3、简算出35.62+35.62×99时,要注意把前一个35.62看成( )×( )
过关检测:
1、简算;
6×5.68+5.68×94 7.5×33×4 4.33×12.5×8
2、下面各题怎样算简便就怎样算
(9.275+0.725)×0.59 33.2-2.64×0.5 0.67×8.3+2.7×0.67-0.67
乘法运算定律教学设计 篇 ……此处隐藏11562个字……递进和开放性题目的练习,使学生进一步理解,共苦乘法交换律。通过比一比使学生感受乘法交换律在计算中的应用价值,初步建立简便计算的理念。师:刚才,同学们的表现太棒了,简单的计算却蕴含着如此奥妙,希望同学们继续发挥潜能探索更加深奥的数学奥秘。
(二)探索乘法结合律
师:同学们知道每年的3月12日是什么节吗?你了解植树的重大意义吗?有一所学校组织了一批学生正在进行植树活动,同学们干得很起劲,我们一起去现场看看吧。(四年级的同学参加植树活动,一共有25个小组,每组里4人负责种树,2人负责浇水。)小组内说一说你了解到的信息。
师:根据现有的数学信息你能提出哪些数学问题?
【设计意图】有时候提出问题比解决问题更重要,通过课本的主题情境图,培养学生了解数学信息并能根据信息提出问题,在提出问题的过程中,学生的思维得到了锻炼。
2:解决问题初步建立乘法结合律感念
师:刚才同学们提出很多很有价值的问题,从中可以看出同学们发现问题的能力很强,相信你们解决问题的能力也一定很强。(1)请回答:负责挖坑、种树的一共有多少人?怎样列式解答?(指名口
答,板书:25×4﹦或者4×25﹦体现了什么定律?(乘法交换律)
(2)请同学们笔答:一共要浇多少桶水?(学生独立解答,同桌可以交流
意见)
(3)组织反馈交流(请学生上台来展示,要求不同列式的学生。)25×2×5 5×2×25 25×5×2
(25×2)×5(25×5)×2 25×(2×5)
(4)引导概括,初步建立乘法结合律概念
师:从上面算式和结果中,你又有什么新发现?(三个数相乘,无论哪两个先乘,积不变。)
【设计意图】在解决问题,合作交流的过程中,使学生感受到数学与生活的紧密联系和应用价值,这里既有乘法交换律的理解与应用,又让学生初步建立乘法结合律的概念,从而为进一步探索乘法结合律做好充分的准备。 3:引导概括,形成乘法结合律
(1)激发引导
师:你们的'发现非常符合上面算式的实际,很有发展性,这些算式中又蕴含着乘法一运算定律,请你们会想一下加法结合律,然后对上面的算式做出选择,写成两组等式,以小组为单位开始吧!
(2)(25×2)×5﹦(25×5)×2
(25×5)×2﹦25×(2×5)
(3)观察概括
师:通过观察说一说你的发现(指名说一说)
生:三个数相乘,先乘前两个数或者先乘后两个数,积不变师:说得太好了!你们知道该怎么称呼这一规律吗?(乘法结合律)我想你们一定是由加法结合律想到的,这种思考问题的方法叫迁移类推,在今后的学习中会不断的用到,下面我们共同的用字母表示乘法结合律(a ×b)×c﹦a ×(b×c)
【设计意图】通过引领学生继续运用迁移类推的方法探索乘法结合律,使学生在探索中能力得到提高,技能得到发展,从而形成适应终身学习的方法基础。
(4)巩固运用,提升乘法结合律(1)填□
5×(14×9)=(5×□)×14
125×(8×13)=(□×□)×13
a ×25×4=□×(□×□)
6×13×5=13×(□×□)
(2)算一算,比一比,想一想,你有什么感受?
15×12???15×2×6
36×25???9×(4×25)
【设计意图】在层次分明循序渐进并有开放性的练习中,使学生进一步巩固和理解乘法结合律。
三:新知推广,内化提高
29×4×5 4×(35×25)125×23×8
40×52×25 4×8×25×125 16×17×5
【设计意图】通过此环节,使学生进一步理解并巩固乘法交换律、乘法结合律,在解决问题的过程中灵活运用,使学生的知识,技能得到进一步的锻炼和发展。
四:回顾反思,拓展延伸
1:回顾反思
(1)知识回答:请你说说你收获了哪些知识?
(2)方法回顾:
师:看来你们的收获还真不少,你能和加法交换律、加法结合律比较一下,有什么新的想法?
2:拓展延伸
师:前面有同学提出“一共有多少同学参加了这次植树活动?”你想不想解决这个问题?你能想到几种列式方法?你一定会有新的发现,祝你成功!
【设计意图】通过对本节课知识、情感、方法的问题、梳理,使之内化为能力,通过课外延伸,激发学生进一步探究新知的欲望,为学习乘法分配律打下基础。
乘法运算定律教学设计 篇11学习目标
1、知道乘法结合律,能运用运算定律进行一些简便运算。
2、培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性
3、能用所学知识解决简单的实际问题。
学习难点:探究和理解结合律,能运用运算定律进行一些简便运算。
学习重点:探究和理解结合律,能运用运算定律进行一些简便运算。
教学流程:
一、 出示课题
板书:探究和理解结合律,能运用运算定律进行一些简便运算。
二、出示学习目标
1、知道乘法结合律,能运用运算定律进行一些简便运算。
2、培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性
3、能用所学知识解决简单的实际问题。
三、自学指导
自学书本第25页的`内容,自己完成以下的问题:
主题图引入(观察主题图,根据条件提出问题。)
一、自学提纲
1、针对上面的问题1列出算式,有几种列法。
2、为什么列的式子不同,它们的计算结果是怎样的。
3、两个算式有什么特点?你还能举出其他这样的例子吗?
4、能给乘法的这种规律起个名字吗?能试着用字母表示吗?
5、乘法结合律有什么作用。
6、根据前面的加法结合律的方法,你们能试着自己学习乘法中的另一个规律吗?
7、这组算式发现了什么?
二、 小组合作学习
根据自学指导,交流汇报,验证。
1、小组讨论乘法的结合律、结合律用字母怎样表示。
2、各小组展示自己小组记定律的方法。
3、分别说说是用什么方法记住这些运算定律的。
4、讨论为什么要学习运算定律。
先乘前两个数,或者先乘后两个数,积不变。这叫做乘法结合律。
三、 交流汇报,集体订正
四、 当堂训练
1、下面的算式用了什么定律
(60×25)×8=60×(25×8)
2、 27/2—4 P25/做一做2
3、在□里填上合适的数。
30×6×7 = 30×(□×□) 125×8×40 =(□×□)×□