
通分教学设计
作为一位无私奉献的人民教师,常常要写一份优秀的教学设计,教学设计把教学各要素看成一个系统,分析教学问题和需求,确立解决的程序纲要,使教学效果最优化。那么写教学设计需要注意哪些问题呢?以下是小编为大家整理的通分教学设计,欢迎阅读与收藏。
通分教学设计1教学内容:
教科书第71页的例14、“试一试”和“练一练”以及第73页的练习十一第1~3题。
教学目标:
1、使学生认识通分的含义,理解和掌握通分的方法,能正确地通分。
2、使学生能联系分数的基本性质理解通分的方法,能解释通分的过程,体会知识的内在联系,培养分析、推理等思维能力。
3、使学生通过主动探索体验成功的感觉,增强学好数学的自信心,产生主动学习的信心和动力。
教学重难点:
掌握通分的方法。
教学过程:
一、复习铺垫,导入新课
师:今天上新课之前老师照例要来考考你们对以前的知识掌握的如何?愿意接受考验吗?
1、口答下面每组数的最小公倍数。
⑴ 3和5的最小公倍数是()。
⑵ 4和12的最小公倍数是()。
⑶ 6和9的最小公倍数是()。
学生先独立思考一下,然后举手回答,并说说你是怎么求的?指名学生口答。
师:看来大家对最小公倍数的求法掌握不错,接着往下看。
2、你能说出与3/4大小相等的分数吗?
指名说,并说出思考过程。指名口答时再说说这么做的依据是什么?过渡:今天我们将继续运用分数的基本性质来学习新的知识。
二、自主探索,建构新知
1、教学例题
(1)出示例题14:把3/4和5/6改写成分母相同而大小不变的分数。指名读题,师:你觉得题目中有哪些要求?(分母相同而大小不变)你会运用以前学过的知识进行改写吗?试试看。
(2)学生在自己本子上独立尝试完成,师巡视,发现不同方法者请板演。
(3)讲评。
师:我们首先来看看第一位同学的,他把它们改写成分母是12的分数,3/4的分母4改写成12要乘3,分子也同时乘3等于9/12,5/6的分母6改写成12要乘2,分子5同时乘2等于10/12,这两个分数的分母相同,它们的分数大小有没有变?为什么?符合题目要求吗?
我们再来看看第二位同学的,把它们改写成分母是24的分数,3/4的分子分母同时乘6等于18/24,5/6的分子分母同时乘4等于20/24,它们的分数大小有没有变?为什么?符合题目要求吗?
师:还可以改写成分母是多少的分数?(指名举例)
师:哦,看来可以用来做他们分母的数还真不少!那么谁来说说在改写的过程中什么发生了变化?什么没有发生变化呢?(指名口答)
师引导并强调分数的分子和分母都变大了,但分数的大小没变。是根据分数的'基本性质来做的。
(3)师:其实呀刚才大家在尝试解题的过程中已经不知不觉地学会了一样新知识,就是通分。(板书:通分)像刚才大家把3/4和5/6这两个原本分母不一样的分数,分别改写成了分母一样,而又大小不变的分数,这个过程就可以说是通分。书上是怎么说的呢?我们不妨打开书本来读一读。
(4)生自学书本71页,然后指名说说什么是异分母分数?什么是同分母分数?什么是通分?(根据学生回答是板书:异分母分数——同分母分数)问:那异分母分数化成同分母分数有什么条件吗?(引导回答和原来分数相等,并板书在横线上)
(5)师:这个相同的分母我们也给它取个名字,叫公分母。(指板演题)谁来说说这几位同学各取什么为他们的公分母?(学生口答)
师:那为什么不取10或者20呢?一定要取12、24、48、?它们和原来这两个分母有什么关系?(引导回答出是原来两个分母的公倍数)
师:比较一下,用哪个数做公倍数比较简单?那12和4、6有什么关系呢?那么你们认为通分时我们一般用什么做公分母比较简单呢?(引导归纳:通分时一般用原来几个分母的最小公倍数做公分母。)
(7)小结:现在你能告诉老师完成通分需要几步呢?(学生自由说)结合学生回答板书:1、找公分母(原分母的最小公倍数)
2、化成同分母分数。
师:那现在我们马上来试一把,先来一个简单的。
2、做练习十一第2题。
学生独立完成,展示交流。
说明:通分找公分母时,可以应用求最小公倍数的方法。
3、教学“试一试”
(1)学生独立完成在书本71页。师巡视发现问题,个别辅导。
(2)展示,全班交流。
师:你通分确定的公分母是多少?你怎样找到的?确定公分母后,应用分数的基本性质,分母乘几,分子也同时乘几。通分就要像课本上这样写出每个分数的转化过程。
三、组织练习,巩固新知
1、完成“练一练”。
学生独立完成,指名三人板演。
检查板演题,说说各是怎样找公分母的,说说要注意的地方。
2、做练习十一第3题。
(1)让学生检查通分,发现问题。
交流:哪组是对的?哪组不对,错在哪里?哪组不够简单?
指出:通分时,通常用几个分母的最小公倍数作公分母,这样既方便结果计算。
通分教学设计2教学目标:
1、结合具体情境,感受计算异分母分数加减法的必要性。
2、通过动手操作折纸,理解异分母分数加减法的算理。
3、能正确计算异分母分数加减法,解决简单分数加减法的实际问题。
4、渗透转化思想,培养迁移、类推和归纳概括的能力。
教学重点:能正确计算异分母分数加减法。
教学难点:理解异分母分数加减法的算理和法则。
教学准备:PPT课件、同样大的长方形纸片若干张。
教学过程:
一、复习导入:
1、填一填。
1/2=()/4=4/()
2、找出下列各组数的最小公倍数。
6和87和1411和9
3、将下列各级分数通分。
1/4和3/87/10和5/6
4、抢答:
1/5+2/53/7+2/74/9+5/9
5/8-3/811/15—11/157/12—5/12小结:同分母分数相加减,分母不变,只把分子相加减。
二、探究新知:
1、创设情境。
PPT出示:同学们在手工课上折纸。淘气用一张纸的1/2折一只小船,笑笑用同一张纸的1/4折一只小鸟。
师:根据这些信息,你能提出 ……此处隐藏8543个字……p>
师:要比较谁的蛋白质含量高,就应该比较2/5和1/4,看这两个分数谁大谁小?说一说,你准备怎么比较?
学生交流自己想法,可能有
①根据分数与除法的关系:2/5=2÷5=0.4
1/4=1÷4=0.25所以2/5大
②根据分数的基本性质1/4=2/8所以2/5大
③根据分数的基本性质1/4=5/20,2/5=8/20,所以2/5大。
④1-2/5=3/5,1-1/4=3/4,3/5小于3/4,所以2/5比1/4大。
(4)揭示通分概念
师:同学们真了不起,想出了好几种不同的方法比较出2/5和1/4的大小,解决“黄豆和蚕豆哪个的蛋白质含量比较高?”这一问题,你喜欢哪一种方法?说说你的理由。
引导学生在交流辨析中明白:人们在比较分数的大小时,化成同分母分数进行比较,这样比较方便。
联系1/4=5/20,2/5=8/20,板书“通分”,口述内容,要求说一说对这句话的理解,明确两点
①和原来相等②同分母
(设计意图:从解决问题出发,学生在多种策略的比较中得出通分后比较分数的大小是非常方便的一种方法。在解决问题中多样,在多样中优化,突现了“人人学有价值的数学”这一理念。学生不仅触到新知的“脉”,还寻找到新知的“源”,不仅知道了学什么,还知道为什么要学,不仅激活了学生的思维,还有利于学生把知识转化为能力。)
(5)怎样通分?
组织学生讨论:怎样通分呢?在交流中明确
①确定公分母(两个分母的公倍数)
②根据分数的基本性质化为同分母分数。
(设计意图:在关注学生学习数学的情感态度时,也不能忽视学生对基本知识技能的掌握。在学生理解了通分含义的基础上,设置“怎样通分?”这一问题,可帮助学生完善知识结构,形成对通分的全面认识和理解。)
四、巩固内化,拓展应用
1、完成第94页的“做一做”
学生独立完成,教师巡视,指名板书“5/6和7/8”的通分情况。
引导学生观察,讨论:用什么做公分母最简便?
2、第95页第3题
学生独立完成,集体订正。
(设计意图:学生独立思考,完成练习,交流发现,形成共识,给每个学生提供了展示才华的机会和空间,同时也是对前面学习内容的检查与反馈。教师的指导和矫正提高了课堂的针对性和时效性。另外,在通分练习中,教师指名板演,抓住时机,引导学生在具体的情景中体会“用最小公倍数做公分母”这一最优方法,使学生对通分的认识不断深化。)
通分教学设计9一、教学内容
用通分来比较分数的大小的方法(教材第73~74页例4、例5、及75页练习十八的第1~3题)。
二、教学目标
1.掌握同分母分数、同分子分数大小的比较方法,并能熟练地,快速地比较。
2.理解和掌握通分的概念,掌握通分的方法,并能正确地把两个分数进行通分。
3.能运用通分的方法,比较异分母分数的大小。
4.经历探索活动,形成解决问题的一些基本策略。
三、重点难点
1.掌握通分的方法。
2.能很快地看出两个数的最小公倍数。
3.熟练灵活地掌握求两个数最小公倍数的方法。
四、教学过程
【复习导入】
提问:1.的'分数单位是(),它有()个这样的分数单位。
2.与,哪个大,为什么?
教师:怎样比较它们的大小呢?今天,我们来探究一种新的方法,可以比较出它们的大小。
1.出示教材第73页例4。(出示世界地图)你知道地球上的陆地多还是海洋多吗?(学生观察图进行判断)
再出示条件:陆地面积约占地球总面积的,海洋面积约占地球总面积的。
(1)放手让学生根据条件自己比较,学生相互交流方法、结果及理由。
(2)小结:要比较陆地面积和海洋面积谁大,就是要比较和的大小。是3个,是7个,所以大于。
(3)比较下面各组分数的大小。
学生独立完成,口答结果。
提问:以上各组分数有什么共同特点?同分母分数如何比较大小?
(学生归纳同分母分数比较大小的方法)
小结:同分母分数分子大的分数比较大。
(4)再出示:
学生尝试比较上面各组分数的大小。
(5)请学生汇报自己比较的结果及理由。
以和为例,学生可以用分数单位的大小推出;因为<,所以3个小于3个。
提问:以上各组分数有什么共同特点?分子相同的分数如何比较大小?
小结:分子相同的分数,分母小的比较大,分母大的比较小。
【新课讲授】
1.出示教材第74页例5。
(1)提问:和这两个分数有什么共同特点?
像这样分子和分母都不相同的分数,怎样比较大小?
学生思考并回答,可能出现以下两种思路:
一种是化成同分母分数比较,一种是化成同分子分数比较。
教师指出:这两种思路,都能把新问题转化成已学过的问题。都是可以的,今天我们重点研究化成同分母分数的方法,我们把几个分数的相同分母叫做公分母。
(2)教师提问:用什么数做公分母?怎样把异分母分数化成与原来分数相等的同分母分数?
学生独立思考。尝试解答,然后在小组内交流。
(3)请学生汇报解答过程。
先求出和的分母的最小公倍数是20,用20作公分母。
板书:
(4)教师提问:根据是什么?(分数的基本性质)
教师指出:异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
板书:异分母分数同分母分数
(5)教师提问:你能说一说怎样通分吗?(学生用自己的语言归纳)
小结:通分时,先求出原来分母的最小公倍数作分母,再看原来分数的分母变成公分母要乘上几,分子也要乘上相同的数,提问:为什么用两个分母的最小公倍数作公分母,用其他较大的公倍数作公分母可以吗?
(6)在通分的基础上,比较和的大小,让学生完整写出例4的比较过程。
3.巩固练习。
(1)完成教材第73页的“做一做”。
判断时要求学生说出根据。
(2)完成教材第74页“做一做”。
【课堂作业】
完成教材第75页练习十八的第1~3题。
学生独立完成后集体订正。
【课堂小结】
通过这节课的学习活动,你有什么收获?学生交流学习的收获。
【课后作业】
完成练习册中本课时练习。
五、板书设计
通分
例3:
例4:
把异分母分数化成和原来分数相等的同分母分数,叫做通分。异分母分数同分母分数