当前位置:首页 > 教学范文 > 教案

六年级数学正比例教案

时间:2023-03-01 00:06:34 收藏本文
六年级数学正比例教案

六年级数学正比例教案

作为一位兢兢业业的人民教师,通常会被要求编写教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。优秀的教案都具备一些什么特点呢?下面是小编为大家收集的六年级数学正比例教案,欢迎阅读,希望大家能够喜欢。

六年级数学正比例教案1

教学内容:

六年级下册总复习83—85页《正比例、反比例》。

教学目标:

(一)知识目标:

(1)通过回顾与交流,鼓励学生自己独立整理知识,形成系统。

(2)通过具体问题的认识进一步认识正比例、反比例的量。

(二) 数学思考与解决问题

通过复习与整理加深对正、反比例意义的理解。并运用正、反比例的知识解决一些实际问题,为以后学习函数打下基础。

(三)情感态度

培养学生认真思考的习惯,学会区分正反比例。

教学重、难点:

(1)进一步认识正、反比例的意义,并能运用正、反比例的意义解决实际问题。

(2)培养学生的问题意识,不断积累活动经验,体会重要的数学思想。

教法学法

自主复习、小组交流、全班交流、互帮互学

教学准备

表格、、小黑板

教学过程

一、情境创设,导入复习

1、判断下面每题中的两种量成什么比例关系?

①速度一定,路程和时间( ) ②路程一定,速度和时间( )

③单价一定,总价和数量( ) ④全校学生做操,每行站的人数和站的行数( )

2、根据条件说出数学关系式,再说出两种相关联的量成什么比例,并列出相应的等式。

(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。

(2)一列火车从甲地开往乙地,每小时行90千米,要行4小时;每小时行80千米,要行X小时。

指名学生口答,老师板书。

二、回顾整理,构建网络

(一)比的知识:

1. 谁来举个例子说说什么是比?什么是比例?什么是比的基本性质?(引导学生列举:“按比例分配”、“比例尺”、“图形的放大与缩小”等例)

2. 说一说用比的知识可以解决哪些实际问题。

让学生体会比在解决实际问题时的应用。

3. 完成教科书p83“回顾与交流”的3题

两人一组,合作完成后,全班交流结果,让学生比较后回答有什么发现。

(二)比和分数、除法的联系

出示:a∶b=( )(( ))=( )÷( )(b≠0)教师问:

1. 你会填写这个的等式吗?学生填好后,再问:

2. 你的根据是什么?(比和分数、除法的联系)

3. 那么比和分数、除法的联系是什么?它们的区别呢?

4. b为什么不能等于0?小组议一议,再交流。

5. 谁来说说比的基本性质与分数的`基本性质、商不变的规律?它们有什么联系吗,谁来说说?

(1)判断:比的前项和后项都乘或都除以相同的数,比值不变。(让学生说说为什么?)

(2)填空:( )(( ))=( )÷( )=( )∶( )(填好后展示学生不同的结果。)

(三)比例尺的知识

什么是比例尺?

(四)正比例,反比例的知识:

(1) 小组合作:把有关正比例反比例的知识在小组内进行交流,整理成知识网络图。

(2) 班内交流,全班分享

(3) 全班同学进行优化, 形成知识网络图。

变化的量---正比例(意义、图象、应用)--反比例(意义、图象、应用)---图形的放缩---比例尺

三:重点复习,强化提高:

1. 一辆汽车在高速路上行驶,速度保持在100千米/时,说一说汽车行驶的路程随时间变化的情况,并用多种方式表示这两个量之间的关系。

(1)学生独立思考

(2) 同桌交流

3)全班交流

a自然语言 b 列表 c 画图 d 关系式

2. 举出生活中正、反比例的例子

3. 完成课本84页巩固与应用

独立完成,班内交流。

四.自主检测,完善提高:

判断并说明理由

(1)出油率一定,香油的质量与芝麻的质量。

(2) 一捆100米长的电线,用去的长度与剩下的长度。

(3) 三角形的面积一定,它的底和高。

(4) 一个数与它的倒数。

五、完成后班内交流,这节课你有什么收获?

板书设计

正比例和反比例

比 比例、应用

分数、比、除法之间的关系

课后反思

本课时有以下特点:

1、抓住复习起点,以小组合作的形式自主讨论复习,既增强了学生的主动性和自觉性,也面向全体学生进行查漏补缺。

2、借助表格的方式来整理复习,更直观地体会比和比例、正比例和反比例的知识点和不同之处。

3、能整合所有的知识,运用多种方法解决简单的实际问题,巩固知识。

六年级数学正比例教案2

教学内容

教科书第52页例1,第55页课堂活动第1题及练习十二1,2,3题。

教学目标

1.使学生通过具体问题情境认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系,能找到生活中成正比例的实例,并进行交流。

2.通过探索正比例意义的教学活动,使学生感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。

3.通过观察、交流、归纳、推断等教学活动,感受数学思维过程的合理性,培养学生的观察能力、推理能力、归纳能力和灵活应用知识的能力。

教学重点

认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系。

教学难点

理解正比例的意义,感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。

教学准备

教具:多媒体课件。

学具:作业本,数学书。

教学过程

一、联系生活,复习引入

(1)下面是居委会张阿姨负责的小区水费收缴情况,用这个表中的数能写成多少个有意义的比?哪些比能组成比例?把能组成的比例都写出来。

(2)揭示课题。

教师:在上面的表中,有哪两种量?(水费和用水量、总价和数量)在我们平时的生活中,除了这两种量,我们还要遇到哪些数量呢?

教师:这些数量之间藏着不少的知识,今天这 ……此处隐藏15563个字……这个90实际上就是这列火车的什么?(速度)

(3)师:它们之间的关系可以用式子表示

路程/时间=速度(一定)

(4) 小结。

时间和路程是两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。它们扩大、缩小的规律是:路程和时间的比的比值总是一定的。

2、 教学例2

(1)出示例2,在布店的柜台上,有像下面一张写着某种花布的米数和总价的表。

数量(米) 1 2 34 5 6 7

总价(元) 8.2 16.4 24.6 32.8 41.0 49.2 57.4

(2)引导学生观察上表内的数据。

(3) 回答下面风个问题:

表中有哪两种量?这两种量有关系吗?为什么?

这两种量是怎样变化的.?

它们的变化有什么规律?

相对应的总价和米数的比各是多少?比值是多少?比较这些比值的大小,相等吗?这个比值实际上就是花布的什么?

(4) 小结。

花布的米和总价也是两种相关联的量,总价是随着米数的变化而变化的。米数扩大,总价也随着扩大;米数缩小,总价随着缩小。它们扩大,缩小的规律是:总价和米数的比的比值是一定的。

3、 概括正比例的意义及关系式。

(1) 比较上面的例1和例2,它们有什么共同点?

(2) 判断成正比例量的方法:是什么?

(3) 师:例1中路随着时间的变化而变化,它们的比的比值,也就是速度保持一定。年以,路程和时间是成正比例的量。大家想一想:在例2中,有哪两种相关联的量?它们是不是成正比例的量?为什么?

(4) 概括关系式:

Y/X=K(一定)

4、 教学例3。

出示例3

师:大家能不能根据上面的判断成正比例量的方法说说?指名口述、师帮助纠正。关系式是:总重量/袋数=每袋面粉重量(一定)

5、 小结。

判断两种相关联的量是否成正比例,关键是看这两种相关联的量中相对应的两个数的比值是否一定,如果比值一定,那么这两种量就是成正比例的量。

四、巩固练习

第13页做一做

五、 总结。

1、 什么叫成正比例的量?

2、 怎样判断两种量是成正比例的量?

六、 作业: 完成练习六第1-3题。

六年级数学正比例教案14

教学内容:P50第3——8题,正反比例关系练习。

教学目的:进一步认识正、反比例关系的意义,能根据正、反比例关系的意义正确判断,培养学生分析推理和判断能力。

教学过程:

一、揭示课题

二、基本知识练习

1、正、反比例意义

提问:什么叫正比例关系,什么叫反比例关系?用字母式子怎样表示正、反比例的`关系?判断成正比例或反比例关系的关键是什么?

2、练:950第4题。

先说出数量关系式,再判断成什么比例?

三、综合练习

1、练习:P50第5题

想一想:这三种数量之间有怎样的关系式,你能找出哪几种比例关系?

口答并说说怎样想的。

2、做练习十二第6题、第7题

第7题评讲时追问:在一个乘法关系式里,什么情况下某两个数成反比例:什么情况一某两个数或正比例?

3、做第8题

提问:从直线上看,支数扩大或缩小时,钱数分别怎样变化?

四、延伸练习

下面题里的数量成什么关系?你能列出式子表示数量之间的相等关系吗?

1、一辆汽车从甲地到乙地要行千米,每小时行50千米,4小时到达;如果每小时行80千米,2.5小时到达。

2、某工厂3小时织布1800米,照这样计算,8小时织布X米。

五、课堂

通过这节课的练习,你进一步认识和掌握了哪些知识?

六、作业

《练习与测试》P25第五、六题。

六年级数学正比例教案15

教学要求

1.理解正比例的意义,能根据正比例的意义判断是不是成正比例。

2.培养同学们用发展变化的观点来分析问题的能力。

3.培养同学们概括能力和分析判断能力。

教学重点

理解正比例的意义。

教学难点

引导同学们通过观察、发现思考两种相关联的量的变化规律。

教学过程

一、复习

1.已知路程和时间,求速度?

2.已知总价和数量,求单价?

3.已知工作总量和工作时间,求工作效率?

二、新知

1.教学例1

投影出示:一列火车1小时行驶90千米,2小时行驶180千米3小时行驶270千米,4小时行驶360千米 ,5小时行驶450千米,6小时行驶540千米,7小时行驶630千米,8小时行驶720千米 6

(1)出示下表,填表

一列火车行驶的时间和路程:

时间

路程

填表,思考:再填表中你发现了什么?

点拨:时间变化,路程也随着变化,我们就说时间和路程是两个相关联的量。(板书:两种相关联的量)

根据计算,你发现了什么?

指出:相对应的两个数的比的比值一样或固定不变,在数学上叫做一定。

用式子表示他们的关系是:路程/时间=速度(一定)(板书)

(2)教师小结:

同学们通过填表交流,知道时间和路程是。两种相关联的量,路程随着时间的变化而变化。时间扩大,路程随着扩大;时间缩小,路程也随着缩小。即:路程/时间=速度(一定)

2.教学例2

(1)花布的`米数和总价表:

数量1234567

总价8.216.424.632.841.049.257.4

(2)观察图表,发现什么规律?

用式子表示它们的关系:总价/米数=单价(一定)

(3)抽象概括正比例的意义。

①比较例1、例2,思考并讨论:这两个例题有什么共同点?

②两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两个量就叫做成正比例的量,它们的关系叫做正比例关系。

③看书,进一步理解正比例的意义。

④如果用x和y表示两种相关联的量,用k表示它们的比值(一定),正比例关系怎样用字母表示出来?

x/y=k(一定)

⑤根据正比例的意义以及表示正比例的式子想一想:构成正比例关系的两种量必须具备哪些条件?

3.教学例3

(1)出示例3:每袋面粉的重量一定,面粉的总重量和袋数,是不是成正比例?

(2)学生讨论解答。

《六年级数学正比例教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式