
关于八年级上册数学教学工作计划汇总9篇
时间流逝得如此之快,我们又将迎来新的喜悦、新的收获,是时候开始制定工作计划了。什么样的工作计划是你的领导或者老板所期望看到的呢?下面是小编精心整理的八年级上册数学教学工作计划9篇,欢迎阅读,希望大家能够喜欢。
八年级上册数学教学工作计划 篇11. 了解线段的比和成比例线段的概念,知道两条线段的比与所采用的度量单位无关;
2. 理解并掌握比例的基本性质,了解比例中项的概念;
3. 了解黄金分割,能利用比例的基本性质解决一些简单的问
教学重点
比例性质及有关计算 黄金分割
教学难点
比例性质的应用
教学过程
设计意图
那么这四条线段成比例线段,简称比例线段。
比例性质:
如果 。b叫作a,c的比例中项。
课堂练习:
1. 已知点c在线段AB上,且AC:CB=2:3,求AB:AC的比值。
2. 已知线段a=4cm,b=9cm,求a,b的比例中项。
3. 如图,在Rt△ABC中,∠C=30°,AB=1,求 ,求线段AC的长。
八年级上册数学教学工作计划 篇2一、指导思想
通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。
二、学情分析
八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。本班是刚刚接手,对班上学生不了解,从原科任老师处得知:优生不多,但后进生却较多,有少数学生不上进,基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。
三、教材分析
第十一章 全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。
第十二章 轴对称立足于已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。
第十三章 实数。从平方根于立方根说起,学习有关实数的有关知识,并以这些知识解决一些实际问题。
第十四章 一次函数通过对变量的考察,体会函数的概念,并进一步研究其中最为简单的一种函数一次函数。了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力。在教材中,通过体现问题情境建立数学模型概念、规律、应用与拓展的模式,让学生从实际问题情境中抽象出函数以及一次函数的概念,并进行探索一次函数及其图象的性质,最后利用一次函数及其图象解决有关现实问题;同时在教学顺序上,将正比例函数纳入一次函数的研究中去。教材注意新旧知识的比较与联系,如在教材中,加强了一次函数与一次方程(组)、一次不等式的联系等。
第十五章 整式在形式上力求突出:整式及整式运算产生的实际背景,使学生经历实际问题符号化的过程,发展符号感;有关运算法则的探索过程,为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握
四、教学措施
1、课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。
2、认真备课、精心授课,抓紧课堂四十五分钟,努力提高教学效果。
3、抓住关键、分散难点、突出重点,在培养学生能力上下功夫。
4、不断改进教学方法,提高自身业务素养。
5、教学中注重自主学习、合作学习、探究学习。
五、教学进度
周 教学内容及课时安排
1 1全等三角形(1) 2三角形全等的条件(4)
2 2三角形全等的条件(2) 3角平分线的性质(1)
3 4 第十一章小结(3)
5 1轴对称(3))轴对称图形(2)
6 14.3.1等腰三角形(3) 14.3.2等边三角形体(2
7 12.3课题学习(2) 第十二章小结(2)
8 平方根3 立方根3
9 实数3 第十三章小结(2)
10 段考 变量与函数3
11 一次函数3 方程与不等式5 课题学习3
12 第十四章小结(2) 15.1.1整式(1) 15.1.2整式的加减(2)
13 15.2.1同底数幂的乘法(1) 15.2.2幂的乘方(1) 15.2.3积的乘方(1)
15.2.4整式的乘法(2)
14 15.2.4整式的乘法(2) 15.3.1平方差公式(2) 15.3.2完全平方公式(1)
15 15.3.2完全平方公式(2) 15.4.1同底数幂的除法(1) 15.4.2整式的除法(2)
16 15.5因式分解(1) 15.5.1提公因式法(1) 15.5.2公式法(3)
18 第十五章小结(3) 总复习
19 总复习
20 考试
八年级上册数学教学工作计划 篇3一、 教学要求
全级组老师应以高度的集体神相互促进。认真细致备好每一章节的课,全面透析知识与能力要点,归纳概念规律,总结方法技巧,精讲精练,突出重点知能的整理与提炼。教会学生独立思考,动手实践,自主探索,激发学生学习数学的兴趣与增强学生学好数学的信心。
二、 本期教学任务
通过本学期的学习,学生在数学的`认识与理解上应该要上一个台阶。在情感与态度上,通过本期的学习使学生认识到数学来源于实践,又反作用于实践,认识现实生活中图形间的数量关系,培养学生实事求是、严肃认真的学习态度,激发学生的学习兴趣,培养学生对数学的热爱,对生活的热爱,在民主、和谐、合作、探究、有序、分享发现快乐,感受学习的快乐。在过程与方法,通过学生积极参与对知识的探究,经历发现知识,发现知识间的内在联系,让学生经历发现知识道路上坎坎坷坷,达到深刻理解掌握知识的目的,达到“漫江碧透,鱼翔浅底”的境界,在经历这些活动中,提高学生的动手实践能力,提高学生的逻辑推理能力
三 提高学科教育质量的主要措施
1、认真做好教学六认真工作。把教学六认真作为提高成绩的主要 ……此处隐藏3609个字……身的业务水平。
四、需要注意的方面:
1.在课堂上改进教学方法,多采用探索、启发式教学。
2.注意教科书的系统性和学科知识的整合,使学生牢固掌握旧知识的基础上,学习新知识,明确新旧知识的联系。
3.注意发展学生探索知识的能力,提高学生分析问题的能力。
4.加强开放性问题、探究性问题教学,培养学生创新意识、探究能力。
5.鼓励合作学习,加强个别辅导,提高差生成绩。
6.注意解题方法和解题策略的学习。
7.因材施教,宽容爱护学生,充分发挥学生的主体作用。
八年级上册数学教学工作计划 篇7一、教学目标
1.使学生理解分式方程的意义.
2.使学生掌握可化为一元一次方程的分式方程的一般解法.
3.了解解分式方程解的检验方法.
4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.
5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想.
二、教学重点和难点
1.教学重点:
(1)可化为一元一次方程的分式方程的解法.
(2)分式方程转化为整式方程的方法及其中的转化思想.
2.教学难点:检验分式方程解的原因
3.疑点及分析和解决办法:
解分式方程的基本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根.让学生在学习中讨论从而理解、掌握.
三、教学方法
启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法.
四、教学手段:
演示法和同学练习相结合,以练习为主.
五、教学过程
(一)复习引入
1.提问:什么叫方程?什么叫方程的解?答:含有未知数的等式叫做方程.
使方程两边相等的未知数的值,叫做方程的解.
(二)新知探索
板书课题:分式方程的定义.
分母中含有未知数的方程叫分式方程(fractional equation).以前学过的方程都是整式方程.(课件展示)
(三)作业布置
必做:课本82页,习题3.7,A组第1、2题。
选作:课本82页,习题3.7,A组第3题;B组第1题。
八年级上册数学教学工作计划 篇8(一)教学知识点
1.分式的基本性质.
2.利用分式的基本性质对分式进行“等值”变形.
3.了解分式约分的步骤和依据,掌握分式约分的方法.
4.使学生了解最简分式的意义,能将分式化为最简分式.
(二)能力训练要求
1.能类比分数的基本性质,推测出分式的基本性质.
2.培养学生加强事物之间的联系,提高数学运算能力.
(三)情感与价值观要求
通过类比分数的基本性质及分数的约分,推测出分式的基本性质和约分,在学生已有数学经验的基础上,提高学生学数学的乐趣.
教学重点
1.分式的基本性质.
2.利用分式的基本性质约分.
3.将一个分式化简为最简分式.
教学难点
分子、分母是多项式的约分.
教学方法
讨论——自主探究相结合
教具准备
投影片六张:
第一张:问题串,(记作3.1.2 A);
第二张:例2,(记作3.1.2 B);
第三张:例3,(记作3.1.2 C);
第四张:做一做,(记作3.1.2 D);
第五张:议一议,(记作3.1.2 E);
第六张:随堂练习,(记作3.1.2 F).
八年级上册数学教学工作计划 篇9教学目标:
1、了解勾股定理及其逆定理的证明方法
2、结合具体例子了解逆命题的概念,会识别两个互逆命题、知道原命题成立其逆命题不一定成立。
教学重点、难点:进一步掌握演绎推理的方法。
教学过程:
一、 温故知新
1、你记得勾股定理的内容吗?你曾经用什么方法得到了勾股定理?
(由学生回顾得出勾股定理的内容。)
定理:直角三角形两条直角边的平方和等于斜边的平方。
二、 学一学
1、问题情境:在一个三角形中,当两边的平方和等于第三边的平方时,我们曾用度量的方法得出“这个三角形是直角三角形”的结论,你能证明这个结论吗?
已知:在ΔABC中,AB2+AC2=BC2
求证:ΔABC是直角三角形
A
B
C
(讲解证明思路及证明过程,引导学生领会证明思路及证明过程,得出结论。)
结论:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
2、议一议:
观察下列三组命题,它们的条件和结论之间有怎样的关系?
如果两个角是对顶角,那么它们相等。
如果两个角相等,那么它们是对顶角。
如果小明患了肺炎,那么他一定会发烧。
如果小明发烧,那么他一定患了肺炎。
三角形中相等的边所对的角相等。
三角形中相等的角所对的边相等。
(引导学生观察这些成对命题的条件和结论之间的关系,归纳出它们的共性,进一步得出“互逆定理”的概念。)
3、关于互逆命题和互逆定理。
(1)在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。
(2)一个命题是真命题,它的逆命题却不一定是真命题。如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理。
(引导学生理解掌握互逆命题的定义。)
4、练习:
(1) 写出命题“如果有两个有理数相等,那么它们的平方相等”的逆命题,并判断是否是真命题。
(2) 试着举出一些其它的例子。
(3) 随堂练习 1
5、读一读“勾股定理的证明”的阅读材料。
6、课堂小结:本节课你都掌握了哪些内容?
(引导学生归纳总结,互逆定理的定义及相互间的关系。)
三、 作业
1、基础作业:P20页习题1.4 1、2、3。
2、拓展作业:《目标检测》
3、预习作业:P21-22页 做一做