
关于高三数学教学工作计划范文锦集8篇
日子如同白驹过隙,不经意间,成绩已属于过去,新一轮的工作即将来临,是时候开始写工作计划了。工作计划的开头要怎么写?想必这让大家都很苦恼吧,以下是小编为大家收集的高三数学教学工作计划8篇,希望对大家有所帮助。
高三数学教学工作计划 篇1(一) 创设情景,引入新课
(借助多媒体)给出一张王小丫的图片(学生情绪高涨),大家都知道王小丫是cctv-2“开心词典”的栏目主持人,下面王小丫给大家出题啦!
观察下列各数列,并填空,然后总结它们有什么共同的特点?具有什么性质?你能给它们起个名字吗?
①1,2,3,4,5,6,7,8, ,…
②3,6,9,12,15, ,21,24,…
③-1,-3,-5,-7,-9,-11, ,-15,…
④2,2,2,2,2,2, ,2,2,…
设计思路:1.通过几个具体的等差数列,为学习新知识创设问题情境,激发学生的求知欲。2.由学生观察数列特点,初步认识等差数列的特征,为后面引出等差数列的概念学习建立基础。3.学生已具备一定的观察能力和抽象概括能力,完全有条件、有可能发现它们的共同特点和性质。4.对问题的总结可以培养学生由具体到抽象、由特殊到一般的认知能力。5.按照“观察--猜想--证明”的思维模式设计问题,符合学生的认知规律,更培养学生完整地认识数学体系。
(二) 启发诱导、探求新知
1、由学生的总结自然的给出等差数列的概念:
如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。
思考并交流对概念的理解,并总结:
①“从第二项起”满足条件;
②公差d一定是由后项减前项所得;
③每一项与它的前一项的差必须是同一个常数(强调“同一个常数”);
在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式: (n≥1)
同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。
1). 9 ,8,7,6,5,4,……;√ d=-1
2). 0.70,0.71,0.72,0.73,0.74……;√ d=0.01
3). 0,0,0,0,0,0,…….; √ d=0
4). 1,2,3,2,3,4,……;×
5). 1,0,1,0,1,……×
其中第一个数列公差d<0 d="">0,第三个数列公差d=0
由此强调:公差可以是正数、负数,也可以是0
2、第二个重点部分为等差数列的通项公式
(1)若一等差数列{an}的首项是,公差是d,则据其定义可得:
a2-a1=d 即:a2=a1+d
a3-a2=d 即:a3=a2+d
……
猜想:
a40= a1+39d
进而归纳出等差数列的通项公式: an=a1+(n-1)d
设计思路:在归纳等差数列通项公式中,我采用讨论式的教学方法。给出等差数列的首项,公差d,由学生研究分组讨论的通项公式。通过总结的通项公式由学生猜想的通项公式,进而归纳 的通项公式。整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识,又化解了教学难点。
(2)此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法——迭加法:
a2-a1=d
a3=a2+d
……
an-an-1=d 将这n-1个等式左右两边分别相加,就可以得到 an–a1= (n-1) d即an=a1+(n-1) d ,当n=1时,此式也成立,所以对一切n∈N﹡,上面的公式都成立,因此它就是等差数列{an }的通项公式。
在迭加法的证明过程中,我采用启发式教学方法。利用等差数列概念启发学生写出n-1个等式。将n-1个等式相加,证出通项公式。在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想” 的教学要求。
(三)巩固新知应用例解
例1 (1)求等差数列8,5,2,…的第20项;第30项;第40项
(2)-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?
例2 在等差数列{an}中,已知a5=10, a20=31,求首项与公差d。
这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的三个量已知时,可根据该公式求出第四个量。
例3 梯子的最高一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。
设置此题的目的:1.加强同学们对应用题的综合分析能力,2.通过数学实际问题引出等差数列问题,激发了学生的兴趣;3.再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法。
(四)反馈练习
1、课后的练习中的第1题和第2题(要求学生在规定时间内完成)。
目的:使学生熟悉通项公式,对学生进行基本技能训练。
2、课后习题第3题和第4题。
目的:对学生加强建模思想训练。
(五)归纳小结、深化目标
1.等差数列的概念及数学表达式an-an-1=d (n≥1)。
强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数。
2.等差数列的通项公式会知三求一。
3.用“数学建模”思想方法解决实际问题。
(六)布置作业
必做题:课本习题第2,6 题
选做题:已知等差数列{an}的首项= -24,从第10项开始为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)
高三数学教学工作计划 篇2一、学生基本情况
175班共有学生66人,176班共有学生60人。学生基本属于知识型,相当多的同学对基础知识掌握较差,学习习惯不太好,两班学习数学的气氛不太浓,学习不够刻苦,各班都有少数尖子生,但是每个班两极分 ……此处隐藏6073个字……力会在无形中得到提高的。
5、 针对实际情况,有效学习
对于基础不太好的,可以重点抓选择前8个、填空前2个、解答题前3个以及后面题的第一问;基础不错的,可以适当关注与高等数学相关的中学数学问题。
6、 培养应试技巧,提高得分能力
考试时要学会认真审题,把握好做题速度,碰到不会的题要学会舍弃,有失才有得,回过头来再看之前的题,许多时候会有豁然开朗的感觉。
高三数学教学工作计划 篇8一.指导思想
今年是我省使用新教材的第七年,即进入了新课程标准下高考的第五年。高三数学教学要以《数学课程标准》为依据,全面贯彻教育方针,积极实施素质教育。提高学生的学习能力仍是我们的奋斗目标.近年来的高考数学试题逐步做到科学化、规范化,坚持了稳中求改、稳中创新的原则.高考试题不但坚持了考查全面,比例适当,布局合理的特点,也突出体现了变知识立意为能力立意这一举措.更加注重考查考生进入高校学习所需的基本素养,这些问题应引起我们在教学中的关注和重视.
二.注意事项
1.高度重视基础知识,基本技能和基本方法的复习.基础知识,基本技能和基本方法是高考复习的重点。我们希望在复习课中要认真落实基础练习,并注意蕴涵在基础知识中的能力因素,注意基本问题中的能力培养.特别是要学会把基础知识放在新情景中去分析,应用.
2.高中的重点知识在复习中要保持较大的比重和必要的深度.原来的重点内容函数、不等式、数列、向量、立体几何,平面三角及解析几何中的综合问题等.在教学中,要避免重复及简单的操练.新增的内容:算法、概率等内容在复习时也应引起我们的足够重视。总之高三的数学复习课要以培养逻辑思维能力为核心,加强运算能力为主体进行复习.
3.重视通性、通法的落实.要把复习的重点放在教材中典型例题、习题上;放在体现通性、通法的例题、习题上;放在各部分知识网络之间的内在联系上抓好课堂教学质量,定出实施方法和评价方案.
4.认真学习《湖南省20xx年高考考试说明》,研究近三年的高考试题,提高复习课的效率.《考试说明》是命题的依据,复习的依据.高考试题是《考试说明》的具体体现.只有研究近年来的考试试题,才能加深对《考试说明》的理解,找到我们与命题专家在认识《考试说明》上的差距.并力求在二轮复习中缩小这一差距,更好地指导我们的复习.
5.渗透数学思想方法,培养数学学科能力.《考试说明》明确指出要考查数学思想方法,要加强学科能力的考查.我们在复习中要加强数学思想方法的复习,如转化与化归的思想、函数与方程的思想、分类讨论的思想、数形结合的思想.以及配方法、换元法、待定系数法、反证法、数学归纳法、解析法等数学基本方法都要有意识地根据学生学习实际予以复习及落实.
6.一轮复习课中注意新的目标定位.①培养学生搜集和处理信息的能力;②激发学生的创新精神;③培养学生在学习过程中的的合作精神;④激活显示各科知识的储存,尝试相关知识的灵活应用及综合应用.
三.知识和能力要求
1.知识要求对知识的要求由低到高分为三个层次,依次是知道和感知、理解和掌握、灵活和综合运用,且高一级的层次要求包括低一级的层次要求。
(1)感知和了解:要求对所学知识的含义有初步的了解和感性的认识或初步的理解,知道这一知识内容是什么,并能在有关的问题中识别、模仿、描述它。
(2)理解和掌握:要求对所学知识内容有较为深刻的理论认识,能够准确地刻画或解释、举例说明、简单的变形、推导或证明、抽象归纳,并能利用相关知识解决有关问题。
(3)灵活和综合运用:要求系统地掌握知识的内在联系,能灵活运用所学知识分析和解决较为复杂的或综合性的数学现象与数学问题。
2.能力要求能力主要指运算求解能力、数据处理能力、空间想象能力、抽象概括能力、推理论证能力以及实践能力和创新意识。
(1)运算求解能力:会根据法则、公式进行正确运算、变形;能根据问题的条件,寻找与设计合理、简捷运算途径。
(2)数据处理能力:会收集、整理、分析数据,能抽取对研究问题有用的信息,并作出正确的判断;能根据要求对数据进行估计和近似计算
(3)空间想象能力:会画简单的几何图形;能准确地分析图形中有关量的相互关系;会运用图形与图表等手段形象地揭示问题的本质。
(4)抽象概括能力:能从具体、生动的实例中,发现研究对象的本质;能从给定的大量信息材料中,概括出一些结论,并能应用于解决问题或作出新的判断。
(5)推理论证能力:会根据已知的事实和已获得的正确数学命题来论证某一数学命题真实性。
(6)应用意识和实践能力:能够对问题所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;能应用相关的数学方法解决问题,并能用数学语言正确地表述、说明。
(7)创新意识和能力:能够独立思考,灵活和综合地运用所学数学的知识、思想和方法,提出问题、分析问题和解决问题。
四.学生情况分析
1基础知识掌握情况分析:高三11、12班大部分学生基础知识掌握情况较好,计算能力不强,一些基本的题型都不能自如的解决。通过一段的一轮复习,大部分学生对复习过的公式,定理、法则都有了一定的认识与理解。基本能够记住该记公式,但对于没有复习的部分,还是有一定的欠缺。表现为一些基本的公式、法则、定理等都忘掉了。
2学习态度情况分析、有相当一部分同学学习态度极为不端正,主要表现为:
(1)缺乏上进心,有相当一部分同学信心不足,没有必胜的勇气和信心。
(2)不能按时完成作业,有抄袭或只是解决一些简单的问题而缺乏深入研究难题的习惯。
(3)缺乏自主复习的习惯,大部分同学只是在等老师引导进行一轮复习,而不能够自己动手搞好提前复习,表现在考试(或作业)中遇到了没有复习的试题时,显得毫无办法。
(4)缺乏动手能力及动手习惯,对复习过的知识不能及时的进行巩固、练习,所发的讲义、练习卷等不能够及时、认真填写,导致对复习过的知识掌握的熟练程度不够。
3复习方式、方法分析:
(1)缺少科学有效的复习方法,有相当一部分同学没有改错本,在一些爱错的地方不断的犯错。不能够做到吃一堑、长一智。
(2)一些同学不会听课,不会记笔记。上课时,整堂忙于记笔记,而忽视听讲,不注意听思路的分析及探索过程。
(3)不注意归纳知识,复习到的只是一些零散的知识,而不是有效的知识、方法体系,显得很笨。
(4)不注意经常回顾,对复习过的知识置之千里,而不去经常巩固、练习。时间长了,又生锈了。
五.复习对策教学措施
1、尽快帮助学生树立信心!
2、教给学生科学的复习习惯和复习方法。
3、坚持基础知识训练。
4、对高考要考察的六类解答问题,一定要认真做好专题复习和训练;每周训练两套模拟试题;每天做好专题训练的配套作业。