
《圆锥的体积》说课稿范文
作为一名为他人授业解惑的教育工作者,就难以避免地要准备说课稿,说课稿有助于提高教师的语言表达能力。怎样写说课稿才更能起到其作用呢?下面是小编为大家收集的《圆锥的体积》说课稿范文,仅供参考,欢迎大家阅读。
《圆锥的体积》说课稿范文篇1各位领导、老师,你们好。今天我要为大家说课的内容是北师大版六年级数学下册第一单元——《圆锥的体积》。下面我从教材分析、教法选择、学法指导和教学过程等方面进行阐述。
一、教材分析
圆锥的体积是在学生已经掌握了圆柱体积计算及应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时的内容。圆锥是人们生产、生活中经常遇到的形体。教学好这部分内容,有利于进一步发展学生的空间观念,为进一步解决一些实际问题打下基础。
数学课程标准要求:教师是学生数学活动的组织者、引导者、合作者。教师要积极利用各种教学资源,创造性地使用教材,设计适合学生发展的教学过程。根据新课程标准的理念和教材特点以及学生的实际,我制定了如下的教学目标及教学重难点。
1、教学目标:
(1)理解圆锥体积公式的推导过程,掌握圆锥体积计算公式,能运用体积公式计算圆锥的体积。
(2)培养学生的观察、理解能力、空间观念,应用所学的知识解决实际问题的能力。
(3)使学生在经历中获得成功的体验,体验数学与生活的联系。
2、教学重点:掌握圆锥体积计算公式,能运用体积公式计算圆锥的体积以及解决一些实际问题。
3、教学难点:理解圆柱体积、圆锥体积在等底等高的条件下,体积之间的倍数关系。
4、教具准备:
(1)多媒体课件。
(2)等底等高、等底不等高、等高不等底的圆锥和圆柱若干套,沙、实验报告单;带有刻度的直尺,绳子等。
二、说教法
我国著名教育家叶圣陶先生指出:教是为了用不着教。教学有法,但教无定法、贵在得法。依据新课程标准理念和教材特点以及学生的认知规律,这节课我主要运用以下教学方法。
1、复习引入法。通过复习长方体、正方体、圆柱体的体积计算公式和推导过程帮助学生温故知新,沟通新旧知识间的联系。
2、情景教学法。通过让学生猜测圆柱体积与圆锥体积的关系,诱发学生对猜测进行验证的情景,融知识性与趣味性为一体,以情激情、以情激趣、以情促知。
3、启发分析法。通过对三次实验结果的分析、比较,培养学生问题意识,启迪学生思维,发展学生智力。
并将自主探究的学习方式贯穿于教材的全过程。恰当运用多媒体教学手段增强教学的新颖性,从而激发学生参与学习的积极性,使他们在求知的学习状态中展示个性,体验到学数学用数学的乐趣。
三、说学法
教与学密不可分,教是为了更好的学。教法是学法的导航,学法是教法的缩影。著名教育家陶行知指出:好的先生不是教书,不是教学生,乃是教学生学。鉴于这样的认识,在强调教法的同时,更要注重学法的指导。本节课在学习过程中,我主要指导学生学会以下学习方法:
1、转化迁移的方法。通过复习圆柱体积的推导过程,使学生学会发现、扑捉知识间的内在联系,促进认知水平的形成和新知的内化。
2、比较分析的方法。通过对三次实验结果的比较、分析,拓展学生的视野,防止知识混淆,提高分析问题和解决问题的能力。
3、合作探究的方法。通过在分组做实验中同学之间的交互作用,树立团体意识,促进共同提高。
四、说程序
新课程把教学过程看成是师生交往、积极互动、共同发展的过程。根据新课程理念和<<数学课程标准》的要求,结合学生的实际,在分析教材,合理选择教法和学法的基础上,我对本节课的教学过程设计分为以下四个环节:
(一)创设情境,引发问题
出示长方体、正方体、圆柱体、圆锥体,问:
1、我们学过了哪些物体体积的计算方法?它们的计算公式各是什么?
2、圆柱的体积计算方法是怎样推导出来的?这节课我们就来学习圆锥的体积。(板书:圆锥的体积)
3、你认为哪一种物体体积的计算方法与圆锥有关?为什么?
4、猜测一下圆柱体积与圆锥体积有什么关系?(板书:v圆柱=3v圆锥?猜测)
(本环节通过创设圆锥体积与谁的体积关系更密切的情景,自然而然导入新课,吸引了学生的注意力,激发学生探索知识的积极性,为新课的学习做了良好的铺垫。)
5、怎样验证自己的猜测?(板书:验证)
(二)合作探索,解决问题
探索是数学的生命线,倡导探索性学习,引导学生经历知识的形成过程,是当前小学数学改革的理念。理解圆锥体积计算公式是本节课的重点,我设计了以下几个环节,让学生通过小组合作,自主探究、动手操作来发现圆锥的体积。
1、出示实验记录单
实验次数
选择一个圆柱和圆锥比较,我们发现
实验结果:它们体积之间的关系
第一次
第二次
第三次
2、师引导学生看懂实验单,按照实验记录单做实验,师巡视指导。
3、让学生介绍实验过程和实验结果。(去掉?)
4、问:做了3次实验,结果为什么不一样?
5、等底等高的圆柱体积和圆锥体积有什么关系?(板书:v圆锥=v圆柱=sh)
6、在这个公式中,s、h分别代表什么?Sh得到什么?为什么要乘?
7、求圆锥的体积要知道什么条件?
师小结:通过猜测、实验验证得出v圆锥=sh
(这样设计,让学生亲身经历知识的形成过程,在与同伴的交流、比较中不断完善优化自己的知识结构,通过自主探究、合作交流,突出重点,突破难点。)
(三)迁移应用,分层提高
练习是掌握知识、形成技能、发展智力的重要环节,根据学生的年龄特点和认知规律,由易到难,由浅入深,力求体现知识的纵横联系,我设计以下几组练习题,请看:
1、尝试解答
出示3组数据,让学生任选一组进行解答。
底面半径4厘米,高6厘米
底面直径4厘米,高5厘米
底面周长25。12厘米,高4厘米
解答完后,叫一名同学板书。
问:为什么都选底面半径和高?
小结:求圆锥的体积,先求出圆锥的底面积,再根据公式求出圆锥的体积。
2、例1:(课件出示教材情景图)在打谷场上,有一个近似于圆锥的小麦堆,底面半径是2米,高是1。5米。你能计算出小麦堆的体积吗?
(生独立列式计算全班交流)
< ……此处隐藏5327个字……使学生理解和掌握求圆锥体积的计算公式,并能运用公式正确计算圆锥的体积。2.培养学生初步的空间观念、观察、操作能力和逻辑思维能力。
3.向学生渗透“事物之间相互联系”及“理论来源于实践”的观点。
其中,教学重点是使学生理解和掌握圆锥体积的计算公式;难点是通过实验理解圆柱和圆锥等底等高时体积间的倍数关系。
二、说教法、学法
根据本节课的内容特点,同时也为了更好的完成教学目标,突出重点、突破难点,本节课,我主要采取让学生做实验的方法,通过动手操作、直观演示,让学生在充分感知中主动获取知识,理解和掌握圆锥体积公式,这样就克服了几何形体计算公式教学中的重结论、轻过程,重记忆、轻理解的弊病。学生则在教师的引导下充分发挥自身的主体作用,通过自己的操作、实验、观察比较、讨论小结推导出圆锥体积的计算公式,从而初步学会运用实验的方法探索新知。
三、说教学准备
为了提高教学效率,课前需要准备好多媒体课件,并为每个小组准备一盆水及一个圆柱和两个圆锥,另外还要为每个小组准备实验记录表一份,
四、说教学过程
熟悉教材只是上好一节课的基础,而合理科学的教学程序才是上好一节课的关键。为了顺利完成本节课的教学任务,我精心设计了一下教学程序。主要分为以下几个环节:
一、情境引入;二、探究新知;三、综合归纳;四、合理应用;五、能力拓展;六、全课总结。
下面我就从这五个环节说一说本节课的教学过程。
一、情境引入
良好的导入是一节课成功的关键,它不仅能抓住学生的心弦,促使学生情绪高涨,步入智力兴奋状态,还有助于帮助学生获得良好的学习效果。
根据本节课圆锥体积公式的推导要用到等底等高的圆柱与圆锥这一具体情况,本环节我设计了这样一个情境:今天我们班来了一位新朋友:淘气。淘气想请同学们帮忙解决一个小问题,同学们愿意吗?事情是这样的:淘气的学校门口有一个卖瓜子的小摊,老板为了省事,不用称称着卖,而是用硬纸板做了两个容器,(大屏幕出示底为12。56平方厘米,高为6厘米的等底等高的圆柱和圆锥形容器)老板总是这样给同学们宣传:我的这两个容器,底一样高也一样,如果你用圆柱形容器买一元钱只能装一次,如果用圆锥形容器买一元钱则可以装两次。同学们,请你们帮淘气想一想,淘气应该用那种方法卖瓜子呢?问题抛出后,给同学们一定的思考时间,然后让同学们各抒己见。同学们的想法不同,当然答案也就不同,这是教师抓住时机再次提问:要想知道那种方法划算,必须怎么办?当学生提出计算体积时,就会发现所学知识不够用了,学生的求知欲望自然被调动起来,这时出示课题:圆锥的课题。
二、探索研究
此时的学生极想知道圆锥体积的计算方法,这时教师给学生提出一个疑问:在我们学习圆柱体积时我们已经清楚:长方体、正方体、圆柱的体积都可以用底面积乘高求得,那么圆锥的体积能否用底面积乘高来求呢?学生通过观察等底等高的圆柱与圆锥不难发现,底面积乘高求得的是圆柱的体积,这时教师再加以引导:能否利用圆柱的体积来求圆锥的体积呢?为每组同学提供交流的时间,让学生明白,只要弄清它们之间的关系,就能利用圆柱的体积求出圆锥的体积。究竟它们的体积之间有什么关系呢?先将圆锥放入圆柱中估计一下。我们要让事实说话。
引导学生做实验发现等底等高的圆柱与圆锥体积之间的关系。为了保证实验能有序有效地开展,实验前要对学生提出明确的要求:
1、组长要明确分工,确定检测员、操作员、记录员。
2、各小组做两次实验,两次方法可以相同也可以不同,要保证实验过程及结果的准确性。
让学生做两次实验的目的,是让学生再次确定实验的结果。当学生完成后,请各组同学进行汇报交流。学生通过实验会发现在等底等高的情况下圆锥体积是圆柱体积的1/3。教师板书。为了再次向学生强调等底等高,教师可以问学生:你们的学具都等底等高吗?让各组学生举起自己的学具。老师发现我们各组之间的学具大小不同,结论怎么相同呢?使学生明白,在等底等高的情况下圆锥体积总是圆柱体积的1/3。这时教师再次质疑:如果不等底等高还会存在这层关系吗?小组之间交换圆锥再次做实验,再次强调等底等高。
三、综合归纳
利用板书,让学生观察,圆锥的体积我们可以怎样进行计算?得出公式:圆锥体积=底面积×高×1/3。
用字母表示:v=1/3sh
然后请同学们仔细阅读所得的结论,你认为哪些字、词比较关键?为什么?要求圆锥的体积必须知道哪些条件?对公式的辨析不仅可以使学生深入理解公式,而且可以避免学生在运用公式时出现错误。
四、合理应用
上课时的情境激发了学生的求知欲望,如果能够解决这一问题,一定能让学生获得成功的体验,因此本环节我安排学生解决的第一个问题是:采用哪种方法更划算?让学生利用条件计算圆柱与圆锥的体积。这样做不仅前后呼应,而且也能让学生再次深入理解圆锥的计算公式。
第二个问题,则是利用例2改编的一个情境:淘气的同学晶晶看到同学们帮淘气解决了问题,也想请同学们帮个忙,利用多媒体出示:麦收季节,晶晶家把收的小麦堆成了一个近似圆锥形的小麦堆,测得底面直径是4米,高是1。2米,每立方米小麦约重735千克,这堆小麦大约有多少千克?(得数保留整数)。教师做简单引导:要解决这一问题必须先求什么?然后让学生独立完成,再利用展台展示个别学生的解题过程,并请学生谈一谈自己的解题思路。
五、能力拓展
此时学生可能已经有些满足,如果继续毫无意思的练习,必将降低其学习的积极性,为此这一环节我就将练习题起了两个有趣的名字:火眼金睛和智力大比拼,以此来激发学生的学习兴趣。同时培养学生用所学知识解决实际问题的能力。这实际上是对圆锥等于与它等底等高圆柱体积的1/3的又一次体会。
1、火眼金睛
火眼金睛其实是几道判断题,希望同学们能像孙悟空一样利用自己的火眼金睛能识别出几句话的对错呢。
1)、圆锥体积是圆柱体积的1/3。( )
2)、如果圆柱圆锥等底等高,圆柱体积是圆锥的3倍,圆锥体积是圆柱体积的2/3。( )
3)、等底等高的圆柱与圆锥,圆锥体积比圆柱体积小2/3。( )
通过这样几句话的判断,可以让学生深入的思考等底等高的圆柱与圆锥体积之间的关系,教师也可以从学生判断的正误上了解一下学生是否对这类应用题已经掌握。
2、智力大比拼
智力大比拼则是在判断题的基础上,来解决一道实际问题,题目是这样的:有一个高9厘米,底面积是20平方厘米的圆柱形容器,里面装满了水,用一个与它等底等高的实心圆锥挤压,最后能挤出多少水?还剩多少水?如果有学生不明白题意,可利用手中的学具进行直观演示。这样也更有利于学生理解等底等高的圆柱与圆锥体积之间的关系。
六、全课总结:
学生学了一节课,究竟学会了什么,让他自己说说看,当然,从学生的回答中教师也可以看出自己的教学任务是否完成,课上的是否成功。