
【实用】数学说课稿范文汇编7篇
作为一位不辞辛劳的人民教师,时常需要编写说课稿,是说课取得成功的前提。那么什么样的说课稿才是好的呢?以下是小编为大家整理的数学说课稿7篇,欢迎大家借鉴与参考,希望对大家有所帮助。
数学说课稿 篇1一、说教材
(一)教学内容:认识几分之一,义务教育课程标准数学实验教科书(人教版)三年级上册第90页例1。
(二)教材所处的地位和作用:
“分数的初步认识”这一单元教材是在学生已经掌握一些整数知识的基础上进行教学的,主要是使学生初步认识分数的含义。这是学生第一次接触分数,从整数到分数是学生认识数的概念的一次质的飞跃,因为无论在意义上,还是在读、写方法以及计算方法上,它们都有很大的差异。分数概念比较抽象,学生接受起来比较困难,不容易一次学好,所以,现行的小学数学教材,分数的教学分两次进行。第一次是分数的初步认识,第二次才是系统的学习分数知识。
本单元只是初步认识。认识“几分之一”又是认识几分之几的第一阶段,是单元的“核心”,是整个单元的起始课,对学生的后续学习起着至关重要的作用,对学生以后学习分、小数等知识以及分数应用题是十分重要的。
(三)教学目标:
1、知识教学点:初步认识分数,理解几分之一的含义,会读写几分之一。
2、能力发展点:亲历合作交流,自主探究的过程。培养学生的观察能力、语言表达能力和迁移类推的能力。
3、情感渗透点:在动手实践、合作交流的过程中,激发学生探求知识的兴趣及自主学习的精神。体会数学与现实生活的紧密联系。
4、创新开发点:通过折四分之一、创造几分之一的过程,培养学生的创新意识和创新的思维品质。
二、说教法
1、转变角色 放手促学
现代教育理论告诉我们:“学生存在着主体性的巨大潜能,他们完全有能力在一定程度上做自己行为的主人”。因此,作为教学活动的组织者、引导者、合作者,我努力创设平等、宽松和谐的学习氛围,让学生通过小组合作、自主探究、生生交流,亲力探究新知的全过程。体会到探究的快乐,成功的欣喜,合作的愉悦。
2、联系生活 引探创新
“数学知识来源于生活,生活本身就是巨大的数学课堂”。因此,本节课我紧密联系学生的生活实际,让学生结合自己的生活经验认识几分之一,体会到生活中处处有数学。并鼓励学生创造出几分之一,激发学生的创新精神。
3、创设情境 升华认识
小学生思维活跃,但只有在宽松、愉快的环境中,他们的聪明智慧才能充分施展发挥,他们的真情实感才能毫无忌讳的流露。针对这一点,我以学生喜欢的帮助八戒分月饼为主线,创设教学情境,唤起学生的情感体验,大大有利于学生对所学内容进行积极地意义建构。
三、说学法
1、自主学习策略
在本课教学中,我坚持以学生为主,把课堂还给学生,让学生自由选择材料表示它的二分之一,自己创造正方形纸的四分之一和几分之一,通过折一折、涂一涂、说一说等实践活动,自主探究,突破本课的重难点。
2、合作学习策略
建构主义特别提倡合作学习,认为“合作”是建构主义学习过程中不可缺少的要素之一。因此,在通过折纸探究几分之一的含义时,我鼓励学生充分地合作交流,在交流的过程中,取长补短,增长见识,真正实现“1+1〉2”。与此同时,学生的表达能力,观察能力,比较能力,辨析能力,倾听的习惯等,都得到了很好的发展。合作意识不断增强,为今后的发展奠定了基础。
四、说教学过程
(一)创设情境、铺垫孕伏
数学不是符号游戏,而是现实世界中人类经验的总结。数学如果脱离了这些丰富多彩而错综复杂的背景材料,学习就成了“无源之水、无本之木”。因此,在探索新知之前,创设秋游学生让月饼情景,让学生思考:当只有一个月饼,两个同学互相谦让,都不肯吃时,该怎么办呢?以此唤起学生的生活经验,引入对新知的探究。
(二)自主探究、合作共研
就本节课而言,感悟分数的含义和理解“是谁的”的含义是教学的重点、难点所在。为此,我设计了有梯度的三层探究活动。
1、认识二分之一
当结合学生的叙述和课件演示,使学生明确:把一块月饼平均分成两份,每份是这块月饼的一半后,激疑:半块月饼用我们学过的1、2、3这样的整数还能表示吗?引出二分之一这个分数,同时教学二分之一的读写法。并引导学生理解:把一块月饼平均分成两份,每份是它的二分之一。让学生借助生活经验,初步理解二分之一的含义。紧接着,教师让学生分小组任选一个图形材料折出它的二分之一。这样,学生通过动手操作、组内交流,进一步深化对二分之一的理解。也为后面对四分之一的理解做好了应有的知识准备。
2、认识四分之一
由于有对二分之一的理解作为基础,在对四分之一教学的处理时,我主要采用迁移的策略,放手让学生自己探索出:自选长方形,平均分成二份,每份是它的几分之一。并鼓励学生创造出多种方法折出一张正方形纸的。同时,引导学生思考:为什么折法不同却都能表示这张正方形纸的?使学生认识到:不论一个图形形状如何,只要是把它平均分,其中的一份就是它的几分之一。
3、创造几分之一
在揭示课题后,回到主题图,让学生找找生活中的几分之一。使学生体会到,生活中处处有数学。并激发学生再次用正方形的纸,创造出更多的几分之一。让学生在自主创新的过程中,深化对几分之一的认识。并在交流,展示的过程中,获得成功的喜悦,体会创造的乐趣。
(三)应用辨析 深化认识
通过“观察下面哪个图里的涂色部分是1/4?”“看图填分数”“看分数涂色”“你能联想到几分之一呢”“说出四个动物住的房间各是大正方形的几分之一”等几个生动活泼的游戏,激发学生的学习兴趣。与此同时,让学生在层层递进的练习中,深化对几分之一的认识。
(四)归纳总结 拓展延伸
课的最后,让学生自己谈感受和收获,引导学生自觉对本节课的知识进行梳理,并利用孩子们了解自己的身体中存在着一些分数的一段小资料,再次激发学生的探究欲望,培养学生的抽象思维能力,进一步加深对分数的理解。
数学说课稿 篇2一、课题
各位专家,各位评委,大家好。
今天我说课的内容是《 》,它是义务教育课程标准实验教科书( )年级( )册第( )单元的内容,属于(数与代数、空间与图形、统计与概率、实践与综合应用)领域的知识
二、说教材、目标
在学习本课内容以前,学生已经系统地学习了( ),已经有了( )的经验,本节课教材首先出示( )场景图,列举了( )种方法来解决问题,联系已在生活中的感性经验 ……此处隐藏9418个字……础知识目标:掌握“向量”的概念及其表示方法,能利用它们解决相关的问题。
2 能力训练目标:逐步培养学生观察、分析、综合和类比能力,会准确地阐述自己的思路和观点,着重培养学生的认知和元认知能力。
3 创新素质目标:引导学生从日常生活中挖掘数学内容,培养学生的发现意识和整合能力;《向量》的教学旨在培养学生的“知识重组”意识和“数形结合”能力。
4 个性品质目标:培养学生勇于探索,善于发现,独立意识以及不断超越自我的创新品质。
三、 教学重点、难点、关键
重点:向量概念的引入。
难点:“数”与“形”完美结合。
关键:本节课通过“数形结合”,着重培养和发展学生的认知和变通能力。
四、 教材处理
建构主义学习理论认为,建构就是认知结构的组建,其过程一般是先把知识点按照逻辑线索和内在联系,串成知识线,再由若干条知识线形成知识面,最后由知识面按照其内容、性质、作用、因果等关系组成综合的知识体。本课时为何提出“数形结合”呢,应该说,这一处理方法正是基于此理论的体现。其次,本节课处理过程力求达到解决如下问题:知识是如何产生的?如何发展?又如何从实际问题抽象成为数学问题,并赋予抽象的数学符号和表达式,如何反映生活中客观事物之间简单的和谐关系。
五、 教学模式
教学过程是教师活动和学生活动的十分复杂的动态性总体,是教师和全体学生积极参与下,进行集体认识的过程。教为主导,学为主体,又互为客体。启动学生自主性学习,启发引导学生实践数学思维的过程,自得知识,自觅规律,自悟原理,主动发展思维和能力。
六、 学习方法
1、让学生在认知过程中,着重掌握元认知过程。
2、使学生把独立思考与多向交流相结合。
七、 教学程序及设想
(一)设置问题,创设情景。
1、提出问题:在日常生活中,我们不仅会遇到大小不等的量,还经常会接触到一些带有方向的量,这些量应该如何表示呢?
2、(在学生讨论基础上,教师引导)通过“力的图示”的回忆,分析大小、方向、作用点三者之间的关系,着重考虑力的作用点对运动的相对性与绝对性的影响。
设计意图:
1、把教材内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”、惊讶、困惑、感到棘手,紧张地沉思,期待寻找理由和论证的过程。
2、我们知道,学习总是与一定知识背景即情境相联系的。在实际情境下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识。这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情境中。
(二)提供实际背景材料,形成假说。
1、小船以0.5m/s的速度航行,已知一条河长20xxm,宽150m,问小船需经过多长时间,到达对岸?
2、到达对岸?这句话的实质意义是什么?(学生讨论,期望回答:指代不明。)
3、由此实际问题如何抽象为数学问题呢?(学生交流讨论,期望回答:要确定某些量,有时除了知道其大小外,还需要了解其方向。)
设计意图:
1、教师站在稍稍超前于学生智力发展的边界上(即思维的最邻近发展)通过问题引领,来促成学生“数形结合”思想的形成。
2.通过学生交流讨论,把实际问题抽象成为数学问题,并赋予抽象的数学符号和表达方式。
(三)引导探索,寻找解决方案。
1、如何补充上面的题目呢?从已学过知识可知,必须增加“方位”要求。
2.方位的实质是什么呢?即位移的本质是什么?期望回答:大小与方向的统一。
3、零向量、单位向量、平行向量、相等向量、共线向量等系列化概念之间的关系是什么?(明确要领。)
设计意图:
学生在教师引导下,在积累了已有探索经验的基础上,进行讨论交流,相互评价,共同完成了“数形结合”思想上的建构。
2、这一问题设计,试图让学生不“唯书”,敢于和善于质疑批判和超越书本和教师,这是创新素质的突出表现,让学生不满足于现状,执着地追求。
3、尽可能地揭示出认知思想方法的全貌,使学生从整体上把握解决问题的方法。
(四)总结结论,强化认识。
经过引导,学生归纳出“数形结合”的思想——“数”与“形”是一个问题的两个方面,“形”的外表里,蕴含着“数”的本质。
设计意图:促进学生数学思想方法的形成,引导学生确实掌握“数形结合”的思想方法。
(五)变式延伸,进行重构。
教师引导:在此我们已经知道,欲解决一些抽象的数学问题,可以借助于图形来解决,这就是向量的理论基础。
下面继续研究,与向量有关的一些概念,引导学生利用模型演示进行观察。
概念1:长度为0的向量叫做零向量。
概念2:长度等于一个单位长度的向量,叫做单位向量。
概念3:方向相同或相反的非零向量叫做平行(或共线)向量。(规定:零向量与任一向量平行。)
概念4:长度相等且方向相同的向量叫做相等向量。
设计意图:
1.学生在教师引导下,在积累了已有探索经验的基础上进行讨论交流,相互评价,共同完成了有向线段与向量两者关系的建构。
2.这些概念的比较可以让学生加强对“向量”概念的理解,以便更好地“数形结合”。
3.让学生对教学思想方法,及其应情境达到较为纯熟的认识,并将这种认识思维地贮存在大脑中,随时提取和应用。
(六)总结回授调整。
1.知识性内容:
例 设O是正六边形A B C D E F的中心,分别写出图中与向量O A、O B、O C相等的向量。
2.对运用数学思想方法创新素质培养的小结:
a.要善于在实际生活中,发现问题,从而提炼出相应的数学问题。发现作为一种意识,可以解释为“探察问题的意识”;发现作为一种能力,可以解释为“找到新东西”的能力,这是培养创造力的基本途径。
b.问题的解决,采用了“数形结合”的数学思想,体现了数
学思想方法是解决问题的根本途径。
c.问题的变式探究的过程,是一个创新思维活动过程中一种多维整合过程。重组知识的过程,是一种多维整合的过程,是一个高层次的知识综合过程,是对教材知识在更高水平上的概括和总结,有利于形成一个自我再生力强的开放的动态的知识系统,从而使得思维具有整体功能和创新能力。
2.设计意图:
1、知识性内容的总结,可以把课堂教学传授的知识,尽快转化为学生的素质。
2、运用数学方法创新素质的小结,能让学生更系统,更深刻地理解数学思想方法在解题中的地位和作用,并且逐渐培养学生的良好个性品质。这是每堂课必不可少的一个重要环节。
(七)布置作业。
反馈“数形结合”的探究过程,整理知识体系,并完成习题5.1的内容。