当前位置:首页 > 教学范文 > 教学计划

【精华】数学教学计划集锦7篇

时间:2021-08-18 07:05:39 收藏本文
【精华】数学教学计划集锦7篇

【精华】数学教学计划集锦7篇

日子如同白驹过隙,不经意间,又将迎来新的工作,新的挑战,写一份教学计划,为接下来的工作做准备吧!但是教学计划要写什么内容才能让人眼前一亮呢?下面是小编收集整理的数学教学计划7篇,希望能够帮助到大家。

数学教学计划 篇1

一、教学目标

1、知识与技能:主要内容包括“分式” “ 函数及其图象”“全等三角形” “平行四边形的判定” “数据的整理与初步处理”共五章,各章都力图讲清知识的来龙去脉,将知识的形成和应用过程呈现给同学们。

2、过程与方法:

[1] 经历“观察————探索————猜测————证明”的学习过程,体验科学发现的一般规律。

[2] 通过探索、学习,使学生逐步学会正确、合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。

3、情感态度与价值观:通过学习交流、合作、讨论的方式,积极探索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。

二、内容分析

第十七章 分式是是代数式中重要的基本概念;分式的概念、分式的基本性质及约分、通分等变形,是全章的理论基础,分式的加、减、乘、除及乘方运算,是全章的重点内容,分式方程的概念,主要涉及可以化为一元一次方程的分式方程。解分式方程时,应用化归思想,并且要注意检验是必不可少的步骤。本章应尽可能采用类比方法学习,联系实际,培养学生有条理的思考与表达。同时培养学生的阅读理解和多角度思考问题的能力。

第十八章 函数及其图象通过对变量的考察,体会函数的概念,并进一步研究一次函数、反比例函数。了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力。在教材中,通过体现“问题情境——建立数学模型——概念、规律、应用与拓展”的模式,让学生从实际问题情境中抽象出函数以及一次函数、反比例函数的概念,并进行探索一次函数、反比例函数的图象及其性质,最后利用一次函数、反比例函数及其图象解决有关现实问题。

第十九章 全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,比较严格地证明全等三角形的性质,探索三角形全等的条件。

第二十章 平行四边形的判定将在上册学习平行四边形性质的基础上,充分运用图形的变换探索发现判定平行四边形的方法,合理运用几何证明所得数学结论,努力实现合情推理与演绎推理的有机结合。

第二十一章 数据的整理与初步处理是在前几册统计与概率内容的基础上,使学生学会选用合适统计图表,进行数据整理,清晰而又准确地表示所收集的数据,同时通过情境引入平均数、中位数与众数以及方差、极差与标准差,较为正确地比较所得数据,使学生掌握分析处理数据的基本方法,用数学语言表述自己的见解。

三、采取措施

1、认真学习钻研新课标,掌握教材;课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。

2、认真备课、精心授课,抓紧课堂四十五分钟,认真上好每一堂课,争取充分掌握学生动态,努力提高教学效果。

3、抓住关键、分散难点、突出重点,在培养学生能力上下功夫;落实每一堂课后辅助,查漏补缺。

4、不断改进教学方法,提高自身业务素养。积极与其它老师沟通,加强教研教改,提高教学水平。

5、教学中注重自主学习、合作学习、探究学习。

6.经常听取学生良好的合理化建议。

四、课时安排

第17章 分式 10课时

第18章 函数及其图象 16课时

第19章全等三角形 16课时

第20章平行四边形的判定 12课时

第21章数据的整理与初步处理 14课时

课题学习 4课时

小结与复习

数学教学计划 篇2

一、班级情况分析。

四年级(3)班有学生43人,其中大部分学生是少数民族黎族生和难侨的学生,学生学习成绩较差,上课不认真听讲、不,能认真完成作业,对于他们来说,学习是一件难的事情,有一些学生上课纪律欠缺,他们上课不愿意动脑,不举手发言,作业质量也不尽如人意,成为班级中的后进生,对于这些学生,改正他们不良的学习习惯是关键问题。

本班学生对于上学期的知识掌握尚可,同时也存在着个别人计算不过关、走进生活题说理不清、变化题不懂思考方法等问题。通过本册知识的学习,锻炼他们的思维、口头叙述的能力、动手操作的能力是一个重要学习的时刻。

二、教学要求。

1、经历三位数除以两位数笔算方法的探索过程,掌握试商和调商的方法,能正确地进行笔算;能判断三位数除以两位数商是几位数,能估计商的最高位是几。

2、能结合现实素材理解乘法与加减法、除法与加减法混合运算的顺序,初步理解小括号的作用,会脱式计算两步运算的式题。

3、经历加法和乘法的交换律、结合律的探索过程,理解这些运算律,会运用这些运算律进行一些加法和乘法的简便运算。

4、初步认识射线和直线,能区分线段、射线和直线;了解两点确定一条直线,两条相交直线确定一个点;体会两点间的所有连线中线段最短,知道两点间的距离。

5、进一步认识角,知道表示角的符号和角的计量单位“度”。认识量角器,会用量角器量指定角的度数,会画指定度数的角,会用三角尺画30°、45°、60°、90°的角。

6、进一步认识直角、锐角和钝角,知道平角和周角,理解锐角、直角、钝角、平角、周角的大小关系。

7、能根据实际需要对数据分段整理,填写统计表,能对统计结果作出简单的分析和判断。

8、在探索三位数除以两位数笔算方法,进行有关的口算、估算的过程中,发展类比迁移能力、合情推理能力,进一步发展数感。

9、在认识射线和直线的过程中发展空间想像能力;在研究角的度数,认识平角、周角,认识平面内两条直线的位置关系等学习活动中,进一步发展空间观念,发展形象思维和抽象思维。

10、在解决问题的过程中,进一步学习有条理的思考,初步学习对结论的合理性作出说明。

11、在解决问题的过程中,能有效地与同伴合作,或者与同伴共同完成任务,或者把自己解决问题的过程和结果与同伴交流,体会合作的益处,进一步培养合作意识。

12、通过数学学习活动,初步体验到数学与日常生活密切相关,认识到许多实际问题可以借助数学方法来解决,并可以借助数学语言来表述和交流,增加对数学的亲近感。

13、在观察、操作、归纳、类比、猜测等数学活动中,体验数学问题的探索性和挑 ……此处隐藏8396个字……本节课的知识特点和学生的认知水平,教学中采用探究式和启发式教学法,通过生活中常见的实际问题引入课题,层层设问,经过思考交流、概括归纳,得到等可能性事件的概念及其概率公式,使学生对问题的理解从感性认识上升到理性认识。

3、情感态度与价值观

概率问题与实际生活联系紧密,学生通过概率知识的学习,可以更好的理解随机现象的本质,掌握随机现象的规律,科学地分析、解释生活中的一些现象,初步形成实事求是的科学态度和锲而不舍的求学精神。

三、重点、难点

重点:理解古典概型的概念及利用古典概型求解随机事件的概率。

难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

四、教学过程

1、创设情境提出问题

师:在考试中遇到不会做的选择题同学们会怎么办?在你不会做的前提下,蒙对单选题容易还是蒙对不定项选择题容易?这是为什么?

【设计意图】通过这个同学们经常会遇到的问题,引导学生合作探索新知识,符合“学生为主体,老师为主导”的现代教育观点,也符合学生的认知规律。随着新问题的提出,激发了学生的求知欲望,使课堂的有效思维增加。

2、抽象思维形成概念

师:考察试验一“抛掷一枚质地均匀的骰子”,有几种不同的结果,结果分别有哪些?

生:在试验中随机事件有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”。

师:我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。

师:考察试验二“抛掷一枚质地均匀的硬币”有哪些基本事件?

生:在试验中基本事件有两个,即“正面朝上”和“反面朝上”。

师:那基本事件有什么特点呢?

问题:(1)在“抛掷一枚质地均匀的骰子”试验中,会同时出现“1点”和“2点”这两个基本事件吗?

(2)事件“出现偶数点”包含了哪几个基本事件?

由如上问题,分别得到基本事件如下的两个特点:

(1)任何两个基本事件是互斥的;

(2)任何事件(除不可能事件)都可以表示成基本事件的和。(让学生交流讨论,教师再加以总结、概括)

【设计意图】让学生归纳与总结,鼓励学生用自己的语言表述,从而提高学生的表达能力与数学语言的组织能力

例1从字母中任意取出两个不同字母的试验中,有哪些基本事件?

师:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果写出来,本小题我们可以按照字母排序的顺序,用列举法列出所有基本事件的结果。

解:所求的基本事件共有6个:

【设计意图】由于学生没有学习排列组合知识,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏,解决了求古典概型中基本事件总数这一难点,同时渗透了数形结合及分类讨论的数学思想。

师:你能发现前面两个数学试验和例1有哪些共同特点吗?(先让学生交流讨论,然后教师抽学生回答,并在学生回答的基础上再进行补充)

试验一中所有可能出现的基本事件有“1点”、“2点”、“3点”、“4点”、“5点”和“6点”6个,并且每个基本事件出现的可能性相等,都是;

试验二中所有可能出现的基本事件有“正面朝上”和“反面朝上”2个,并且每个基本事件出现的可能性相等,都是;

例1中所有可能出现的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6个,并且每个基本事件出现的可能性相等,都是;

经概括总结后得到:

①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等。

我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。

【设计意图】学生在合作交流的探究氛围中思考、质疑、倾听、表述,体验到成功的喜悦,学会学习、学会合作,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳问题的能力。

3、概念深化,加深理解

试验“向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的”。你认为这是古典概型吗?为什么?

生:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件。

试验“某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环’。你认为这是古典概型吗?为什么?

生:不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件。

【设计意图】这两个问题的设计是为了让学生更加准确的把握古典概型的两个特点,突破了如何判断一个试验是否是古典概型这一教学难点,培养学生思维的深刻性与批判性。

4、观察比较推导公式

【设计意图】学生通过运用观察、比较方法得出古典概型的概率计算公式,体验数学知识形成的发生与发展的过程,体现具体到抽象、从特殊到一般的数学思想,同时让学生感受数学化归思想的优越性和这一做法的合理性。

师:我们在使用古典概型的概率公式时,应该还要注意些什么呢?(先让学生自由说,教师再加以归纳)在使用古典概型的概率公式时,应该注意:

①要判断该概率模型是不是古典概型;

②要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。

【设计意图】深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。

5、应用与提高

【设计意图】本题通过学生的观察比较,发现两种结果不同的根本原因是——研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐使学生养成自主探究能力。同时培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣。

6、知识梳理课堂小结

1、本节课你学习到了哪些知识?

2、本节课渗透了哪些数学思想方法?

7、作业布置

1、阅读本节教材内容

2、必做题课本130页练习第1,2题,课本134页习题3。2A组第4题

3、选做题课本134页习题B组第1题

8、教学反思

本节课的教学设计以“问题串”的方式呈现为主,教学过程中师生共同合作,体验古典概型的特点,公式的生成、发现,把“数学发现”的权力还给学生,让学生感受知识形成的过程,获得数学发现的体验。将学习的主动权较完整地交还给学生。本节课始终本着在教师的引导下,学生通过讨论、归纳、探究等方式自主获取知识,从而达到满意的教学效果。构建利于学生学习的有效教学情境,较好地拓展师生的活动空间,符合新课程的理念。

《【精华】数学教学计划集锦7篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式