当前位置:首页 > 教学范文 > 教学计划

【精华】九年级下册数学教学计划四篇

时间:2021-10-18 02:16:37 收藏本文
【精华】九年级下册数学教学计划四篇

【精华】九年级下册数学教学计划四篇

光阴迅速,一眨眼就过去了,新的机遇和挑战向我们走来,是时候静下心来好好写写教学计划了。好的教学计划都具备一些什么特点呢?以下是小编帮大家整理的九年级下册数学教学计划4篇,仅供参考,欢迎大家阅读。

九年级下册数学教学计划 篇1

一、教学内容

本章较为系统的研究成比例线段、相似图形、相似三角形、中位线、位似图形、图形与坐标等,探索并体验相似在现实生活中的广泛应用。本章是继图形的全等之后集中研究图形形状的内容,是对图形全等知识的

进一步拓展和发展。整个设计力图引导学生观察、分析生活现实和教学现实的相似现象,总结图形相似的有关特征并自觉应用到现实之中。同时,通过“相似图形”进一步丰富学生的教学活动经验,有意识的培养学生积极的情感态度,认识教学丰富的人文价值,促进学生观察、分析、归纳、概括等一般能力和审美意识的发展。

二、教学目标

1、通过生活中的实际认识物体和图形的相似,知道相似与轴对称、平移、旋转一样,也是图形之间的一种变换.

2.探索并确认相似图形的性质,知道相似多边形的对应角相等,对应边成比例以及面积比的关系.

3.了解线段的比、成比例线段的概念,比例的基本性质,会判断以知线段是否成比例.

4.了解相似三角形的概念,探索两个三角形相似的条件及其主要性质.

5.能利用相似三角形的性质解决一些简单的实际问题. 6.了解图形的位似,能利用位似的方法将一个图形放大或缩小. 7.了解三角形和梯形的中位线定理、三角形重心的概念以及有关应用. 8.能建立适当的坐标系,描述物体的位置.能灵活运用不同的方式确定物体的位置.

9.在同一直角坐标系中,感受图形变换后点的坐标的变化.

10.在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,进一步培养学生的演绎推理能力.

三、教学重点难点

1、教学重点:成比例线段、相似三角形和相似多边形的性质和判定,位似图形的概念和作法。

2、教学难点:利用性质和判定分析和解决问题。 3、教学关键:成比例线段、相似三角形的性质和判定。

四、教学策略

1、采用引导发现法培养学生类比推理能力;采用尝试指导法,逐步培养学生独立思考的能力及语言表达能力.充分发挥学生的主体作用,使学生在轻松愉快的气氛中掌握知识.

2、让学生充分发表自己的见解,给学生一定的时间和空间自主探索每一个问题,而不是急于告诉学生结论。

3、充分发挥小组合作,多开展讨论交流,让学生自己找到答案。

九年级下册数学教学计划 篇2

一、基本情况:

本学期是初中学习的关键时期,本学期我担任九年级(4)班的数学教学工作,是新课程标准实验教材,如何用新理念使用好新课程标准教材?如何在教学中贯彻新课标精神?这要求在教学过程中的创新意识、引导学生进行思考问题方式都必须不同与以往的教学。因此,在完成教学任务的同时,必须尽可能性的创设情景,让学生经历探索、猜想、发现的过程。并结合教学内容和学生实际,把握好重点、难点。树立素质教育观念,以培养全面发展的高素质人才为目标,面向全体学生,使学生在德、智、体、美、劳等诸方面都得到发展。为做好本学期的教育教学工作,特制定本计划。

二、指导思想:

初三数学是以党和国家的教育教学方针为指导,按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学生都能够在此数学学习过程中获得最适合自己的发展。通过九年级数学的教学,提供参加生产和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决简单的实际问题,培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。

三、教学内容:

本学期所教初三数学包括二次函数和圆是新授课外,主要是综合复习,迎接中考。

四、教学目的:

1、态度与价值观:通过学习交流、合作、讨论的方式,积极探索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。

2、知识与技能:理解点、直线、圆与圆的位置关系概念。掌握圆的切线及与圆有关的角等概念和计算。理解数据的整理及分析等有关概念,能够计算方差、标准差等,能够用表格或列树状图的方法计算概率,对上述知识作一些简单的应用。掌握初中数学教材、数学学科“基本要求”的知识点。

3、过程与方法:通过探索、学习,使学生逐步学会正确、合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。围绕初中数学教材、数学学科“基本要求”进行知识梳理,围绕初中数学“六大块”主要内容进行专题复习,适时的进行分层教学,面向全体学生、培养全体学生、发展全体学生

五、教学重难点

第一阶段(第5周——第12周):全面复习基础知识,加强基本技能训练。

这个阶段的复习目的是让学生全面掌握初中数学基础知识,提高基本技能,做到全面、扎实、系统,形成知识网络。

1、重视课本,系统复习。现在中考命题仍然以基础题为主,有些基础题是课本上的原题或变式题,后面的大题虽是“高于教材”,但原型一般还是教材中的例题或习题,是教材中题目的引伸、变形或组合,所以第一阶段复习应以课本为主。必须深钻教材,绝不能脱离课本,应把书中的内容进行归纳整理,使之形成结构。课本中的例题、练习和作业要让学生弄懂、会做,书后的“读一读”、“想一想”、“试一试”,也要学生认真想一想,集中精力把九年级和八年级下的教学内容等重点内容的例题、习题逐题认认真真地做一遍,并注意解题方法的归纳和整理。一味搞题海战术,整天埋头让学生做大量的课外习题,其效果并不明显,有本末倒置之嫌。

教师在这一阶段的教学主要按知识块组织复习,可将代数部分分为六章节:第一章数与式;第二章方程与不等式;第三章函数;第四章基本图形;第五章图形与变换;第六章统计与概率。复习中可由教师提出每个章节的复习提要,指导学生按“提要”复习,同时要注意引导学生根据个人具体情况把遗忘了知识重温一遍,边复习边作知识归类,加深记忆,还要注意引导学生弄清概念的内涵和外延,掌握法则、公式、定理的推导或证明,例题的选择要有针对性、典型性、层次性,并注意分析例题解答的思路和方法。

2、重视对基础知识的理解和基本方法的指导。基础知识即初中数学课程中所涉及的概念、公式、公理、定理等。要求学生掌握各知识点之间的内在联系,理清知识结构,形成整体的认识,并能综合运用。例如一元二次方程的根与二次函数图形与x轴交点之间的关系,是中考常常涉及的内容,在复习时,应从整体上 ……此处隐藏2727个字……数y=ax2的图象之间的关系,理解函数y=a(x—h)2+k的性质。

【难点】

正确理解函数y=a(x—h)2+k的图象与函数y=ax2的图象之间的关系以及函数y=a(x—h)2+k的性质。

教学过程

一、问题引入

1。函数y=x2+1的图象与函数y=x2的图象有什么关系?

(函数y=x2+1的图象可以看成是将函数y=x2的图象向上平移一个单位得到的。)

2。函数y=—(x+1)2的图象与函数y=—x2的图象有什么关系?

(函数y=—(x+1)2的图象可以看成是将函数y=—x2的图象向左平移一个单位得到的。)

3。函数y=—(x+1)2—1的图象与函数y=—x2的图象有什么关系?函数y=—(x+1)2—1有哪些性质?

(函数y=—(x+1)2—1的图象可以看作是将函数y=—x2的图象向左平移一个单位,再向下平移一个单位得到的,开口向下,对称轴为直线x=—1,顶点坐标是(—1,—1)。)

二、新课教授

问题1:你能画出函数y=—x2,y=—(x+1)2,y=—(x+1)2—1的图象吗?

师生活动:

教师引导学生作图,巡视,指导。

学生在直角坐标系中画出图形。

教师对学生的作图情况作出评价,指正其错误,出示正确图形。

解:(1)列表:

xy=—x2y=—(x+1)2y=—(x+1)2—1

…………

—3——2—3

—2—2——

—1—0—1

00——

1——2—3

2—2——

3——8—9

…………

(2)描点:用表格中各组对应值作为点的坐标,在平面直角坐标系中描点;

(3)连线:用光滑曲线顺次连接各点,得到函数y=—x2,y=—(x+1)2,y=—(x+1)2—1的图象。

问题2:观察图象,回答下列问题。

函数开口方向对称轴顶点坐标

y=—x2向下x=0(0,0)

y=—(x+1)2向下x=—1(—1,0)

y=—(x+1)2—1向下x=—1(—1,—1)

问题3:从上表中,你能分别找到函数y=—(x+1)2—1,y=—(x+1)2与函数y=—x2的图象之间的关系吗?

师生活动:

教师引导学生认真观察上述图象。

学生分组讨论,互相交流,让各组代表发言,达成共识。教师对学生回答错误的地方进行纠正,补充。

函数y=—(x+1)2—1的图象可以看成是将函数y=—(x+1)2的图象向下平移1个单位得到的。

函数y=—(x+1)2的图象可以看成是将函数y=—x2的图象向左平移1个单位得到的。

故抛物线y=—(x+1)2—1是由抛物线y=—x2沿x轴向左平移1个单位长度得到抛物线y=—(x+1)2,再将抛物线y=—(x+1)2向下平移1个单位得到的。

除了上述平移方法外,你还有其他的平移方法吗?

师生活动:

教师引导学生积极思考,并适当提示。

学生分组讨论,互相交流,让各组代表发言,达成共识。

教师对学生回答错误的地方进行纠正,补充。

抛物线y=—(x+1)2—1是由抛物线y=—x2向下平移1个单位长度得到抛物线y=—x2—1,再将抛物线y=—x2—1向左平移1个单位得到的。

问题4:你能发现函数y=—(x+1)2—1有哪些性质吗?

师生活动:

教师组织学生讨论,互相交流。

学生分组讨论,互相交流,让各组代表发言,达成共识。

教师对学生回答错误的地方进行纠正,补充。

当x—1时,函数值y随x的增大而增大;当x—1时,函数值y随x的增大而减小;当x=—1时,函数取得最大值,最大值y=—1。

三、典型例题

【例】 要修建一个圆形喷水池,在水池中心竖直安装一根水管,在水管的顶端安装一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1 m处达到最高,高度为3 m,水柱落地处离池中心3 m,水管应多长?

师生活动:

教师组织学生讨论、交流,如何将文字语言转化为数学语言。

学生积极思考、解答。

指名板演,教师讲评。

解:如图(2)建立的直角坐标系中,点(1,3)是图中这段抛物线的顶点,因此可设这段抛物线对应的函数关系式是y=a(x—1)2+3(0≤x≤3)。

由这段抛物线经过点(3,0)可得0=a(3—1)2+3,

解得a=—,

因此y=—(x—1)2+3(0≤x≤3),

当x=0时,y=2。25,也就是说,水管的长应为2。25 m。

四、巩固练习

1。画出函数y=2(x—1)2—2的图象,并将它与函数y=2(x—1)2的图象作比较。

【答案】函数y=2(x—1)2的图象可以看成是将函数y=2x2的图象向右平移一个单位得到的,再将y=2(x—1)2的图象向下平移两个单位长度即得函数y=2(x—1)2—2的图象。

2。说出函数y=—(x—1)2+2的图象与函数y=—x2的图象的关系,由此进一步说出这个函数图象的开口方向、对称轴和顶点坐标。

【答案】函数y=—(x—1)2+2的图象可以看成是将函数y=—x2的图象向右平移一个单位,再向上平移两个单位得到的,其开口向下,对称轴为直线x=1,顶点坐标是(1,2)。

五、课堂小结

本节知识点如下:

一般地,抛物线y=a(x—h)2+k与y=ax2的形状相同,位置不同,把抛物线y=ax2向上(或下)向左(或右)平移,可以得到抛物线y=a(x—h)2+k。平移的方向和距离要根据h、k的值来确定。

抛物线y=a(x—h)2+k有如下特点:

(1)当a0时,开口向上;当a0时,开口向下;

(2)对称轴是x=h;

(3)顶点坐标是(h,k)。

教学反思

本节内容主要研究二次函数y=a(x—h)2+k的图象及其性质。在前两节课的基础上我们清楚地认识到y=a(x—h)2+k与y=ax2有密切的联系,我们只需对y=ax2的图象做适当的平移就可以得到y=a(x—h)2+k的图象。由y=ax2得到y=a(x—h)2+k有两种平移方法:

方法一:

y=ax2

y=a(x—h)2

y=a(x—h)2+k

方法二:

y=ax2

y=ax2+k

y=a(x—h)2+k

在课堂上演示平移的过程,让学生切身体会到两种平移方法的区别和联系,这里利用几何画板软件效果会更好。

《【精华】九年级下册数学教学计划四篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式