当前位置:首页 > 教学范文 > 教学计划

关于初三数学教学计划合集10篇

时间:2021-10-18 01:47:41 收藏本文
关于初三数学教学计划合集10篇

关于初三数学教学计划合集10篇

日子在弹指一挥间就毫无声息的流逝,又将开始安排今后的教学工作了,该写为自己下阶段的教学工作做一个教学计划了,那么教学计划怎么写才能体现你的真正价值呢?下面是小编为大家整理的初三数学教学计划10篇,希望能够帮助到大家。

初三数学教学计划 篇1

初三数学教学计划内容

为了提高学生的学习兴趣,增大学生的学习参与面,减小差距。努力作好教学工作,在这一学期中,下文将准备了初三数学教学计划如下:

一、坚持先练后教的原则

具体步骤是:课前备课根据每节课的教学内容精选一定量的、具有代表性、典型性的例题,课堂教学中,根据例题的数量和难度,规定时间让学生先练习,在学生练习时,教师特别要关注差生,与差生一起练习。学生在练习中就能发现自己还没有掌握的问题,当学生感觉到自己所学的不足与缺陷时,自然会向教师提出问题。教师抓住这个时机,激发学生求知欲,促进学生产生知难而进、通于攻破难题的信心,引导学生解决问题。在解题的过程中按照中考说明确定的重点、难点渗入教材的知识点,激发学生重新认识教材知识点的兴趣。

二、活跃课堂气氛,增加复习课的色彩,创设趣味性教学情境

复习课往往让学生感觉枯燥无味,要想取得良好的复习效果,创设轻松愉快的课堂复习氛围是很重要的。目前,中考数学的命题,新增了开放性、探索性等实际应用题。而数学教学融入有意义的生活是数学教学的根本。为了缓解学生复习时的紧张情绪,在复习教学过程中,教师要在现实生活中挖掘数学问题,引导学生用数学方法解决生活中的数学问题,体现数学生活化,这是提高数学趣味性的有效途径。

三、狠抓双基,全面巩固基础知识

中考试题是对初中数学基础知识的全面考察,知识点覆盖率达75%以上,中考试题依据中学生的身心发展特点,一般不会有难题、怪题、偏题,难易度的比例通常控制在容易题:中等题:较难题为5:3:2,基础知识的巩固,基本技能的训练是复习过程中的重中之重。学生只有在掌握了基础知识的前提下,识记理解公式、定理,运用公式、定理分析、解决问题,才能对数学问题进一步深化与提高。俗话说万丈高楼平地起,没有扎实的基础,万丈高楼从何谈起。夯实基础是灵活运用的前提。复习教学中,切忌好高骛远,使学生如坠雾中,如悬空中。

四、广泛收集资料,精心选制题目

对于每一份资料,每一张试卷,教师要先全面通读,吸其精华,剔其糟粕,筛选典型的,有价值的题目给学生做,对于学生已经掌握的或大纲不要求学生掌握的,以及重复训练的题目,教师要考虑将其删去,对于涉及教材重点知识又有必要重复训练的,教师也要注意题量。

初三数学教学计划 篇2

我有以下设想,主要是问题的解决。

那么,现在存在的问题是许多学生面对急于求成,造成学习上的方法不当,出现无形的学习压力,造成各方面的损失。对于这些问题的解决我想从以下几方面来做:

1.在教学中积极引导学生,对学生进行思维能力的培养,提高学习效率。

2.在课堂中涉入与有关的试题知识,作业也渗透一些知识。

3. 在训练巩固方面,对作业的要求是做到每天必练,当天问题及时解决。

4.组织学生进行一次数学知识系统分析会。

5.中考结束后进行一次学生个人搜集一套中考性试题。

6.中考总复习后进行一次分组提问会,学生提出自己备考中的问题,师生交流解决。

总之,为中考做好备战工作,及时发现问题及时解决、归纳全力以赴完成中考复习工作,让全体学生有一个满意的中考成绩!

初三数学教学计划 篇3

初三《代数》包括一元二次方程、函数及其图象和统计初步三章内容,其中一元二次方程一章的主要内容为:一元二次方程的解法和列方程解应用题,一元二次方程的根的判别式,根与系数的关系,以及与一元二次方程有关的分式方程的解法;重点是一元二次方程的解法和列方程解应用题;难点是配方法和列方程解应用题;关键是一元二次方程的解法。函数及其图象一章的主要内容是函数的概念、表示法、以及几种简单的函数的初步介绍;重点是一次函数的概念、图象和性质;难点是对函数的意义和函数的表示法的理解;关键是处理好新旧知识联系,尽可能减少学生接受新知识的困难。统计初步一章的主要内容和重点是平均数、方差、众数、中位数的概念及其计算,频率分布的概念和获取方法,以及样本与总体的关系。

初三《几何》包括解直角三角形和圆两章内容,其中解直角三角形一章的主要内容为锐角三角函数和解直角三角形,也是本章重点;难点和关键是锐角三角函数的概念。圆一章的主要内容为圆的概念、性质、圆与直线、圆与角、圆与圆、圆与正多边形的位置、数量关系;重点是圆的有关性质、直线与圆、圆与圆相切的位置关系,以及和圆有关的计算问题;难点是运用本章及以前所学几何或代数知识解决一些综合性较强的题目;关键是对圆的有关性质的掌握。

初三《代数》和《几何》是初中数学的重要组成部分,通过初三数学的教学,要使学生学会适应日常生活,参加生产和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力.

本学年我担任初三年级的数学教学工作。其学生在数学学科的基本情况是:大多数学生对初二学年的数学基础知识掌握太差,很多知识只限于表面了解,机械记忆,忽视内在的、本质的联系与区别,不注重对知识的理解、掌握及灵活运用,特别是少数学生对某些章节(如四边形、分式、二次根式等)或者是一问三不知,或者是张冠李戴。就班级整体而言,33班成绩大多处于中等偏下,31班成绩大多处于中等层次。

针对上述情况,我计划在即将开始的学年教学工作中采取以下几点措施:

1、新课开始前,用一个周左右的时间简要复习初二学年的所有内容,特别是几何部分。

2、教学过程中尽量采取多鼓励、多引导、少批评的教育方法。

3、教学速度以适应大多数学生为主,尽量兼顾后进生,注重整体推进。

4、新课教学中涉及到旧知识时,对其作相应的复习回顾。

5、坚持以课本为主,要求学行完成课本中的练习、习题(A组)、复习题(A组)和自我测验题,

学生做完后教师讲解,少做或不做繁、难、偏的数学题目。

6、复习阶段多让学生动脑、动手,通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。

7、利用各种综合试卷、模拟试卷和样卷考试训练,使学生逐步适应考试,最终适应中考并考出好成绩。

初三数学教学计划 篇4

根据学校工作安排,我担任初三年级数学,本学期教学计划如下:

一、教学思想:

教育学生掌握基础知识与基本技能,培养学生的逻辑思 ……此处隐藏6272个字……方程的概念提供了契机.

二、目标和目标解析

(一)教学目标

1.体会一元二次方程是刻画实际问题的重要数学模型,初步理解一元二次方程的概念;

2.了解一元二次方程的一般形式,会将一元二次方程化成一般形式.

(二)目标解析

1.通过建立一元方程解决相关的实际问题,让学生体会到未知数相乘导致方程的次数升高,继而产生一元二次方程.学生能举例说明一元二次方程存在的实际背景,感受一元二次方程是重要的数学模型,体会到学习的必要性;

2.将不同形式的一元二次方程统一为一般形式,学生从数学符号的角度,体会概括出数学模型的简洁和必要,针对“二次”规定a≠0的条件,完善一元二次方程的概念.学生能够将一元二次方程整理成一般形式,准确的说出方程的各项系数,并能确定简单的字母系数方程为一元二次方程的条件.

三、教学问题诊断分析

一元二次方程是学生学习的第四个方程知识,首先在初一学习了一元一次方程,接着扩展“元”得到二元一次、三元一次方程,完成了二元一次方程组的学习,初二分式的教学,使得对实际问题的刻画从整式推广到有理式,分式方程得以出现,到一元二次方程第一次实现 “次”的提升.学生必然存在着疑问,为什么有些背景列得的方程是二次的呢?教学中要直面学生的疑问,显化学生的疑问,启发学生自己解释疑问,才能避免“灌输”,体现知识存在的必要性,增强学好的信念.

培养建模思想,进一步提升数学符号语言的应用能力, 让学生自己概括出一元二次方程的概念,得出一般形式,对初三学生是必须的,也是适可的.

本课的教学重点应该放在形成一元二次方程概念的过程上,不能草草给出方程的概念就反复辨析练习,在概念的理解上要下功夫.

本课的教学难点是一元二次方程的概念.

四、教学过程设计

(一)创设情境,引入新知

教师展示教科书本章的章前图,请同学们阅读章前问题,并回答:

问题1.这个方程属于我们学过的某一类方程吗?

师生活动:学生整理已经学过的方程类型,复习方程的概念,元与次的概念,观察新方程,分析此方程的元与次,尝试为新方程命名.

【设计意图】使学生认识到一元二次方程是刻画某些实际问题的模型,体会学习的必要性,在学生已有的知识的体系中合理的构建一元二次方程这一新知识.

问题2.这样的方程在其他实际问题中是否还存在呢?你能再想出一个例子吗?

师生活动:学生思考二次项产生的原因,从熟悉的实际背景中,很有可能从矩形的面积出发,设计情境.

【设计意图】让学生从“接受式”的学习方式中走出来,走向对一元二次方程产生的根源的探求,在编制情境的过程中,他们将加深对一元二次方程概念的理解.部分学生能够独立解决问题,自己编制情境并列出方程,部分学生可以根据同学给出的情境去列方程,或者阅读课本上的实际问题.

(二)拓宽情境,概括概念

给出课本问题1、问题2的两个实际问题,设未知数,建立方程.

问题1 如图21.1-1,有一块矩形铁皮,长100 cm,宽50 cm.在它的四个角各切去一个同样的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3 600 cm2,那么铁皮各角应切去多大的正方形?

个队参赛,则每个队要与其他____个队各赛一场,全部比赛共有___ 场.

由此,我们可以列出方程______________,化简得________________.

问题3. 这些方程是几元几次方程?

师生活动:学生将实际问题中的语言转化成数学的符号语言,体会运算关系,寻找等量关系,学习建模.将列得的方程化简整理,判断出方程的次数.

【设计意图】在建模的过程中不仅加强学生的数学思维能力,而且对二次项产生的根源将更加明晰,加深对一元二次方程的理解.让学生回答方程的元与次,一是让他们体会统一成一般形式的必要性,为概念的形成做铺垫,分解教学的难点;二是让他们明确教学的主线,从被动学习走向主动学习.

问题4.这些方程是什么方程?

师生活动:观察本课得出的一些方程,思考它们的共性,同学们尝试给出一元二次方程的定义,并且概括出一元二次方程的一般形式.

1.一元二次方程的概念:

等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2(二次)的方程叫做一元二次方程.

2.一元二次方程的一般形式是

是二次项,a是二次项系数;

开发学生认识的资源,激发学生从不同角度、不同形式去深入理解同一概念,让不同的学生在此过程中获得不同的收获,实现分层教学分层指导的效果.

问题6. 下列方程哪些是一元二次方程?

例1.下列方程哪些是一元二次方程?

(1)

;

(3)

;

(5)

.

答案(2)(5)(6).

师生活动:用概念指导辨析,方程(3)与(4)同学们可能会产生争议,(3)帮助学生明确一元二次方程是整式方程,(4)体会化为一般形式的必要性,对a≠0条件加深认识.

【设计意图】补足学生所举正反例的缺漏,追问:有二次项的一元方程就是一元二次方程吗?帮助学生进一步巩固概念,深化对一元、二次的认识.

问题7.指出下列方程的二次项、一次项和常数项及它们的系数.

例2. 将下列方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数:

(1)

师生活动: (1)将方程

,移项,合并同类项得:

,二次项系数是3;一次项是

,常数项是

,过程略.

例3.关于x的方程

时此方程为一元二次方程;

时此方程为一元一次方程.

【设计意图】在形式比较复杂的方程面前,通过辨析方程的元、次、项看清方程的本质,深化理解,淡化对一元二次方程概念的记忆.

(四)巩固概念,学以致用

教科书第4页: 练习

【设计意图】巩固性练习,同时检验一元二次方程概念的掌握情况.

(五)归纳小结,反思提高

请学生总结今天这节课所学内容,通过对比之前所学其它方程,谈对一元二次方程概念的认识,反思学习过程中的典型错误.

(六)布置作业:教科书习题21.1

复习巩固:第1,2,3题.

五、目标检测设计

1.下列方程哪些是关于x的一元二次方程

(1)

;(3)

.

【设计意图】考查对一元二次方程概念的理解.

2.关于

是一元二次方程,则( ).

A.

C.

【设计意图】考查

的一元二次方程

《关于初三数学教学计划合集10篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式