
关于数学教学计划四篇
时间过得真快,总在不经意间流逝,我们又将在努力中收获成长,现在的你想必不是在做教学计划,就是在准备做教学计划吧。如何把教学计划写出新花样呢?以下是小编为大家整理的数学教学计划4篇,仅供参考,希望能够帮助到大家。
数学教学计划 篇1一、学情分析
本学期继续任教四(3)、四(6)两个班共94人的数学教学。部分学生能正确认识到数学学习的重要性,能按正确学习方法学数学,平时能遵守课堂常规,认真完成作业;少数学生学习习惯、学习态度不太好,课堂上不能专心致志,注意力会分散、思想开小差,学习目的性不够明确,也不能保持最基本的纪律;个别学生在课堂上不愿开口,发言不积极。所以,学生良好学习行为习惯的培养和有效开展课堂讨论和提高学习效果将是本学期要工作努力的方向。从上学期考试成绩分析,学生的基础的知识、概念、定义掌握比较牢固,口算、笔算验算及脱式计算基本掌握,少数学生粗心大意,灵活性不够,应用能力不够强。部分学生接受能力较强,学习态度较端正;也有部分学生自觉性不够,不能及时完成作业等,对于学习数学有一定困难。所以在新的学期里,在端正学生学习态度的同时,应加强培养他们的各种学习数学的能力,以提高成绩。
少数学生自觉性不够,缺乏刻苦钻研的精神,总想偷懒,作业马虎。今后首先还是加强学习习惯培养,如学前的自习、课后的复习等。在书写上还要继续提高要求,只有让学生在认真书写的基础上才有可能认真思考。其次,这学期整数的计算(简便计算)占了极大一块内容,所以培养他们的计算能力是关键。另外培养解决实际问题的能力也是本学期的重点,在教学中加强数学数量关系的分析,让学生学会分析,学会审题,提高解题能力。最后在激发学生学习兴趣方面多寻找方法,使他们乐学,愿学,努力提高他们的学习成绩。
二、教材分析
这一册教材包括下面一些内容:平移、旋转和轴对称、认识多位数、三位数乘两位数、用计算器计算、解决问题的策略、运算律、三角形、平行四边形和梯形、确定位置、整理和复习等内容。
本册教材主要特点:本册教材具有内容丰富、关注学生的已有经验与生活体验、体现知识的形成过程、鼓励算法多样化、改变学生的学习方式,体现开放性、灵活性的教学方法等特点。教材努力体现新的教学观念和学习观念,具有创新、实用、开放的特点。本教材既注意体现教育新理念,又注意继承传统的数学教育内涵,使我们的实验教材具有基础性、丰富性和发展性。
在数与计算方面,这一册教材安排了认识多位数,三位数乘两位数,用计算器计算和运算律。本册这些知识的学习,一方面使学生学会用较大的数进行表达和交流,掌握较大数范围内的计算技能,进一步发展数感;另一方面通过十进制计数法的学习,对有关数概念的各方面知识进行系统的整理和融会贯通,为学生形成科学、合理的数学认知结构奠定基础;并为进一步学习小数、分数及小数、分数的四则运算做好铺垫。
在空间与图形方面,这一册教材安排了平移、旋转和轴对称、三角形、平行四边形和梯形和确定位置三个单元,这些都是本册的重点教学内容。
在解决问题方面:一方面在现实情景中提出与数学有关的问题,运用掌握的知识或规律解决问题。另一方面能发现并提出简单的数学问题,能探索出解决问题的有效方法,能有效地与同伴合作,在教师的指导下,进一步提高数学表达水平,进一步学习反思评价,感受数学的魅力。
本册教材根据学生所学习的数学知识和生活经验,安排了应用数学的综合应用──“★多边形的内角和”、“●一亿有多大”和“●数字与信息”,让学生通过小组合作的探究活动或有现实背景的调查了解活动,运用所学知识解决问题,体会探索的乐趣和数学的实际应用,感受用数学的愉悦,培养学生的数学意识和实践能力。
【教学重点】:认识多位数、三位数乘两位数、运算律、解决问题的策略、三角形、平行四边形和梯形的认识。
【教学难点】:三角形、平行四边形和梯形的认识。
三、教学目标
1.知识与技能方面
(1)使学生联系已有的知识和经验,经历从具体问题中抽象数量关系,并探索算法和运算律的过程,掌握有关的计算方法和运算顺序,发现并初步理解一些简单的运算规律;初步认识自然数的一些特征;初步理解用字母表示数的意义和基本方法。
(2)使学生经历探索一些常见平面图形的特征以及简单变换的过程,认识三角形、平行四边形和梯形及其特征,了解图形的对称和图形位置关系的简单变换。
2.数学思考方面
(1)在探索计算方法、发现运算规律的过程中,开展类比、猜想、归纳、验证等活动,发展合情推理能力。
(2)在探索自然数的一些特征,学习用字母表示数的过程中,进行观察、比较、分析、综合,进一步发展抽象思维,增强符号感。
(3)在探索平面图形的特征、对图形进行简单变换以及设计图案的过程中,进一步发展形象思维和空间观念。
3.解决问题方面
(1)能从现实情境中发现并提出一些简单的数学问题,并能运用所学的数学知识和方法解决问题,进一步发展应用意识。
(2)能在解决问题的过程中,合理使用计算器进行计算,初步学会用画图的策略整理和表达信息,探索解决问题的有效方法。
(3)在解决问题的过程中,进一步积累解决问题的策略,体会解决问题策略的多样性,逐步增强对解决问题过程的反思意识。
4.情感与态度方面
(1)在探索和发现数学知识、规律的过程中,进一步获得成功的体验,产生对数学事实和数学内在联系的好奇心,树立学好数学的自信心。
(2)在理解数学内容以及运用数学知识、方法解决简单实际问题的过程中,进一步体验数学与生活的密切联系,感受数学的价值与作用。
(3)能努力克服数学学习中遇到的困难;热心参与数学问题的讨论;发现错误能主动改正。
(4)能主动、认真地阅读一些数学背景资料,感受数学在社会发展中的作用,进一步形成对数学的积极情感。
四、教学措施
1.以学生的发展为本,用活新教材,深入开发例题资源,充分挖掘问题资源,合理利用习题资源。
2.紧密结合现实环境,努力创设现实情境,认真组织数学活动,使学生体验和理解数学。
3.让学生在具体的操作活动中开展观察、猜想、推理、交流等活动,鼓励学生发表自己的意见,并与同伴进行交流,愿意并学会合作。
4.优化教学策略,采取各种生动活泼的形式激发学生的兴趣,让学生在轻松愉快的气氛中学好数学。
5.充分利用学生已有的生活经验,引导学生把所学知识应用到生活中去,解决身边的数学问题,了解数学在现实生活中的作用,体会学习数学的重要性,提高学习积极性。
6. ……此处隐藏3476个字……样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的。例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等。
四、教学目标
(一)知识与技能
1、掌握数轴的三要素,能正确画出数轴。
2、能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。
(二)过程与方法
1、使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意
识。
2、对学生渗透数形结合的思想方法。
(三)情感、态度与价值观
1、使学生初步了解数学来源于实践,反过来又服务于实践 的辩证唯物主
义观点。
2、通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得
到和谐美的享受。
五、教学重点及难点
1、重点:正确掌握数轴画法和用数轴上的点表示有理数。
2、难点:有理数和数轴上的点的对应关系。
六、教学建议
1、重点、难点分析
本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小.难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。
2、知识结构
有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下:
定 义 规定了原点、正方向、单位长度的直线叫数轴
三要素 原 点 正方向 单位长度
应 用 数形结合
七、学法引导
1、教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法。
2、学生学法:动手画数轴,动脑概括数轴的三要素,动手、动脑做练习。
八、课时安排
1课时
九、教具学具准备
电脑、投影仪、三角板
十、师生互动活动设计
讲授新课
(出示投影1)
问题1:三个温度计.其中一个温度计的液面在0上2个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.
师:三个温度计所表示的温度是多少?
生:2℃,-5℃,0℃.
问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(小组讨论,交流合作,动手操作)
师:我们能否用类似的图形表示有理数呢?
师:这种表示数的图形就是今天我们要学的内容—数轴(板书课题).
师:与温度计类似,我们也可以在一条直线上画出刻度,标上读
数,用直线上的点表示正数、负数和零.具体方法如下
(边说边画):
1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);
2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);
3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…
师问:我们能不能用这条直线表示任何有理数?(可列举几个数)
让学生观察画好的直线,思考以下问题:
(出示投影2)
(1)原点表示什么数?
(2)原点右方表示什么数?原点左方表示什么数?
(3)表示+2的点在什么位置?表示-1的点在什么位置?
(4)原点向右0.5个单位长度的A点表示什么数?
原点向左1.5个单位长度的B点表示什么数?
根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义.
师:在此基础上,给出数轴的定义,即规定了原点、正方向和单
位长度的直线叫做数轴.
进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?
通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.
【教法说明】通过“观察—类比—思考—概括—表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力.
师生同步画数轴,学生概括数轴三要素,师出示投影,生动手动脑练习
尝试反馈,巩固练习
(出示投影3).画出数轴并表示下列有理数:
1、1.5,-2.2,-2.5, , ,0.
2.写出数轴上点A,B,C,D,E所表示的数:
请大家回答下列问题:
(出示投影4)
(1)有人说一条直线是一条数轴,对不对?为什么?
(2)下列所画数轴对不对?如果不对,指出错在哪里?
【教法说明】此组练习的目的是巩固数轴的概念.
十一、小结
本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.
十二、课后练习 习题1.2第2题
十三、教学反思
1、数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。
2、教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。
3、注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。