
【必备】数学教学计划模板集合五篇
时间过得可真快,从来都不等人,我们又将奔赴下一阶段的教学,写好教学计划才不会让我们努力的时候迷失方向哦。以期更好地开展接下来的教学工作,以下是小编为大家整理的数学教学计划6篇,希望对大家有所帮助。
数学教学计划 篇1一、指导思想
我们全体教师都参加了义务教育新课标新教材的暑期培训,知晓《数学新课程标准》:提倡让学生在做中学。面对新课程改革的挑战,我们必须转变教育观念,多动脑筋,多想办法,密切关注数学与生活实际的联系,使学生从生活经验和客观事实出发,在研究现实问题的过程中做数学、理解数学和发展数学,让学生享受快乐数学。这学期要继续认真学习先进的教育理论和新的课程标准,积极投身课程改革,以提高课堂教学效率为重点,吃透教材,探索教法,提高效率,狠抓落实,大力推进以课程改革为重点的素质教育,促进发展,提高教学质量,促进学生德智体美全面发展。
二、班级分析
执教的一(2)班级共有56名学生,二年级的学生在经过一年的数学学习后,基本知识技能有相对的提高,对数学学习也有了一定的了解。在动手操作,语言表达等方面有了很大的提高,合作互助了意识也有了明显的增强,但是学生之间存在着明显的差距。优等生思维活跃,发言积极;中等生课堂上几乎是默默无闻后进生学习方法不得当,对每个基础知识掌握的速度总是慢许多。因此,在这一学期的教学中更多关注后进生学生学习兴趣和学习方法的培养上,并使不同的学生得到不同的发展。
三、教材分析
(一)教学内容
本学期教材内容包括下面一些内容: 100以内的加、减法的笔算,表内乘法(一),表内乘法(二),认识长度单位厘米和米,初步认识角,从不同的位置观察物体和简单的对称现象,简单的数据整理方法和以一当二的条形统计图,数学广角和数学实践活动等。这册教材的计算教学内容是100以内的加、减法笔算和表内乘法。这两部分内容都是进一步学习计算的重要基础。特别是表内乘法是学习多位数乘法的基础。因为任何一个多位数乘法,在计算时都要分成若干个一位数和一位数相乘。因此,表内乘法同20以内的加、减法一样,是小学数学的重要基础知识,是小学生需要掌握的基本技能之一,必须达到计算正确、迅速。同时,100以内的加、减法笔算和表内乘法是人们在日常生活中解决问题时经常用到的数学知识与技能。因此,在这两部分计算教学中,教材安排了运用这些知识解决问题的教学,使计算教学与解决问题教学有机的结合在一起。这不仅有助于学生了解数学知识与现实生活的联系,也有助于培养学生应用所学数学知识解决实际问题的能力。
在量的计量方面,本册教材出现厘米和米的认识,让学生通过各种自主探索的学习活动,理解使用统一的长度单位进行测量的必要性,建立1厘米和1米的长度观念,初步学会用尺量物体的长度。
在空间与图形方面,本册教材安排了初步认识线段与角、从不同的位置观察物体和简单的对称现象等教学内容,使学生通过观察、操作,初步认识线段,角和直角,轴对称和镜面对称现象,能辨认从不同位置观察到的简单物体的形状,形成初步的空间观念。
在统计知识方面,本册教材安排的是简单的数据收集和整理的方法,认识以一当二的条形统计图,让学生经历用统计方法解决问题的过程。
数学广角是新的教学内容,介绍了简单的组合思想和逻辑推理方法,培养学生初步的观察、分析及推理能力,以及有顺序地、全面地思考问题的意识。
本册教材根据学生所学习的数学知识和生活经验,安排了两个数学实践活动,让学生通过小组合作的探究活动或有现实背景的活动,运用所学知识解决问题,体会探索的乐趣和数学的实际应用,感受用数学的愉悦,培养学生的数学意识和实践能力。
(二)教学目标
知识和技能方面
1、掌握100以内笔算加、减法的计算方法,能够正确地进行计算。初步掌
握100以内笔算加、减法的估算方法,体会估算方法的多样性。
2、知道乘法的含义和乘法算式中各部分的名称,熟记全部乘法口诀,熟练地口算两个一位数相乘。
3、初步认识长度单位厘米和米,初步建立1米、1厘米的长度观念,知道1米=100厘米;初步学会用刻度尺量物体的长度(限整厘米);初步形成估计物体长度的意识。
4、初步认识线段,会量整厘米线段的长度;初步认识角和直角,知道角的各部分名称,会用三角板判断一个角是不是直角;初步学会画线段、角和直角。
5、能辨认从不同的位置观察到的简单物体的形状;初步认识轴对称现象,并能在方格纸上画出简单的轴对称图形;初步认识镜面对称现象。
6、初步了解统计的意义,体验数据的收集、整理、描述和分析的过程,会用简单的方法收集和整理数据。
数学思考方面
1、能运用生活经验,对有关数学信息作出解释,并初步学会用具体的数据
描绘现实世界中的简单现象。
2、初步了解统计的意义,体验数据的收集、整理、描述和分析的过程,会用简单的方法收集和整理数据。初步认识条形统计图(1格表示2个单位)和统计表,能根据统计图表中的数据提出并回答简单的问题。
3、通过观察、猜测、实验等活动,找出最简单的事物的排列数和组合数,培养学生初步观察、分析及推理的能力,初步形成有顺序地、全面地思考问题的意识。
解决问题方面
1、经历从生活中发现并提出问题、解决问题的过程,体验数学与日常生活的密切联系,感受数学在日常生活中的作用。
2、了解同一问题可以有不同的解决办法。
3、有与同学合作解决问题的经验。
4、初步学会表达解决问题的大致过程和结果。
情感与态度方面
1、在他人的鼓励和帮助下,对身边与数学有关的某些事物有好奇心,能积
极参与生动、直观的教学活动。
2、在他人的鼓励和帮助下,能克服在数学活动中遇到的某些困难,获得成
功的体验,有学好数学的信心。
3、经历观察、操作、归纳等学习数学的过程,感受数学思考过程的合理性。
4、在他人的指导下,能够发现数学活动中的错误,并及时改正。
5、体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。
6、养成认真作业、书写整洁的良好习惯。
7、通过实践活动,体验数学与日常生活的密切联系。
(三)教学的重点、难点
教学重点:100以内的加、减法笔算,表内乘法。
教学难点:100以内的加、减笔算,以及数学实践、数学思维的训练。
四、教学措施
1、力争按高效课堂基本范式要求,从整体上把握教学 ……此处隐藏6159个字……5y=3;④
第四步,解④,得y=;
第五步,得到方程组的解为x=;y=。
思考1:你能写出求解一般的二元一次方程组的步骤吗?
上题的算法是由加减消元法求解的,这个算法也适合一般的二元一次方程组的解法.
对于一般的二元一次方程组可以写出类似的求解步骤:
第一步,①×b2-②×b1,得;③
第二步,解③,得.
第三步,②×a1-①×a2,得;④
第四步,解④,得;
第五步,得到方程组的解为
(高斯消去法)
思考2:根据上述分析,用加减消元法解二元一次方程组,可以分为五个步骤进行,这五个步骤就构成了解二元一次方程组的一个“算法”.我们再根据这一算法编制计算机程序,就可以让计算机来解二元一次方程组.那么解二元一次方程组的算法包括哪些内容?
思考3:一般地,算法是由按照一定规则解决某一类问题的基本步骤组成的.
你认为:
(1)这些步骤的个数是有限的还是无限的?
(2)每个步骤是否有明确的计算任务?
总结:在数学中,按照一定规则解决某一类问题的明确和有限的步骤称为算法.
算法(algorithm)一词出现于12世纪,源于算术(algorism),即算术方法.指的是用阿拉伯数字进行算术运算的过程.在数学中,算法通常是指按照一定的规则解决某一类问题的明确的和有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法.
广义地说,算法就是做某一件事的步骤或程序.菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算法,歌谱是一首歌曲的算法.在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序.比如解方程的算法、函数求值的算法、作图的算法,等等.
(三)例题剖析,巩固提高
例1(课本P3例1):如果让计算机判断7是否为质数,如何设计算法步骤?
算法:
第一步,用2除7,得到余数1,所以2不能整除7.
第二步,用3除7,得到余数1,所以3不能整除7.
第三步,用4除7,得到余数3,所以4不能整除7.
第四步,用5除7,得到余数2,所以5不能整除7.
第五步,用6除7,得到余数1,所以6不能整除7.
因此,7是质数.
课堂练习1:
整数89是否为质数?如果让计算机判断89是否为质数,按照上述算法需要设计多少个步骤?
思考4:用2~88逐一去除89求余数,需要87个步骤,这些步骤基本是重复操作,我们可以按下面的思路改进这个算法,减少算法的步骤.
(1)用i表示2~88中的任意一个整数,并从2开始取数;
(2)用i除89,得到余数r.若r=0,则89不是质数;若r≠0,将i用i+1替代,再执行同样的操作;
(3)这个操作一直进行到i取88为止.
你能按照这个思路,设计一个“判断89是否为质数”的算法步骤吗?
算法设计:
第一步,令i=2;
第二步,用i除89,得到余数r;
第三步,若r=0,则89不是质数,结束算法;若r≠0,将i用i+1替代;
第四步,判断“i>88”是否成立?若是,则89是质数,结束算法;否则,返回第二步.
探究:一般地,判断一个大于2的整数是否为质数的算法步骤如何设计?
在中央电视台幸运52节目中,有一个猜商品价格的环节,竟猜者如在规定的时间内大体猜出某种商品的价格,就可获得该件商品.现有一商品,价格在0~8000元之间,采取怎样的策略才能在较短的时间内说出比较接近的答案呢?
例2、一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整17,多少只小兔多少只鸡?
算法1:S1首先计算没有小兔时,小鸡的数为:17只,腿的总数为34条。
S2再确定每多一只小兔、减少一只小鸡增加的腿数2条。
S3再根据缺的腿的条数确定小兔的数量:(48-34)/2=7只
S4最后确定小鸡的数量:17-7=10只.
算法2:S1首先设只小鸡,只小兔。
S2再列方程组为:
S3解方程组得:
S4指出小鸡10只,小兔7只。
算法3:S1首先设只小鸡,则有只小兔
S2列方程
S3解方程得,则
S4指出小鸡10只,小兔7只.
算法4:S1“请一名驯兽师”所有小鸡抬一条腿,所有小兔抬两条腿
S2有小兔只
S3有小鸡只
S4指出小鸡10只,小兔7只.
算法5:S1有小兔只
S2有小鸡只
二分法:
对于区间[a,b]上连续不断,且f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,而得到零点近似值的方法叫做二分法.
例3(课本P4例2):写出用“二分法”求方程的近似解的算法.
算法分析:
令f(x)=,则方程的解就是函数f(x)的零点.
第一步,令f(x)=,给定精确度d.
第二步,确定区间[a,b],满足f(a)·f(b)<0.
第三步,取区间中点.
第四步,若f(a)·f(m)<0,则含零点的区间为[a,m],否则,含零点的区间为[m,b].
将新得到的含零点的区间仍记为[a,b];
第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.
(四)课堂小结,巩固反思
1、算法的主要特点:
(1)有限性:一个算法在执行有限步后必须结束;
(2)确切性:算法的每一个步骤和次序必须是确定的;
(3)输入:一个算法有0个或多个输入,以刻划运算对象的初始条件.所谓0个输入是指算法本身定出了初始条件.
(4)输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果.没有输出的算法是毫无意义的.
2、计算机解决任何问题都要依赖算法,算法是建立在解法基础上的操作过程,算法不一定要有运算结果.设计一个解决某类问题的算法的核心内容是将解决问题的过程分解为若干个明确的步骤,即算法,它没有一个固定的模式,但有以下几个基本要求:
(1)符合运算规则,计算机能操作;
(2)每个步骤都有一个明确的计算任务;
(3)对重复操作步骤作返回处理;
(4)步骤个数尽可能少;
(5)每个步骤的语言描述要准确、简明.