
《三角形的内角和》教学反思15篇
身为一名人民老师,教学是重要的任务之一,通过教学反思能很快的发现自己的讲课缺点,写教学反思需要注意哪些格式呢?以下是小编为大家收集的《三角形的内角和》教学反思,仅供参考,大家一起来看看吧。
《三角形的内角和》教学反思1在教学《三角形的内角和》这一课时,为了达到本节的教学目标,我在教学中根据学生的认知特点,放开手让学生去自己验证三角形的内角和是多少。
上课前学生就已经知道三角形的内角和是180°,为了让学明白为什么是180°,激发了学生的学习兴趣。在讲“三角形的内角和”时,开始就由大小不同的三个角(锐角、直角、钝角)争论谁的角大入手,导出锐角三角形、直角三角形、钝角三角形争论谁的内角和大。对于这场争论的结果是什么,会引发学生的思考,究竟哪个三角形的内角和大?这也正是我本节课要与学生共同研究的问题。处于这种状态的学生注意力特别集中,学习兴趣异常高涨,到了一触即发的地步。于是我及时揭示课题,提出学习目标,引导学生讨论学习方法。当学生通过量一量、拼一拼、折一折之后得出自己的`结论时,他们体验了成功,也学会了学习。在这节课中师生互动交流,共同找到了几种验证三角形内角和是180°方法,很好地体现了师生的双边活动。试想,如果上课之初,我自己一味的的去告诉他们三角形的内角和为什么是180°,并且告诉他们探究方法,我想即便告诉的方法再多,再详细,他们学到的也只是有限的方法,而且是老师的方法,不是自己发现的方法。但换一种教学方式,孩子们不但找到了所有我知道的方法,也找到了我意想不到的方法,我们大家在研究中都是受益者。
为学生营造了探究的情境。学习知识的最佳途径是由学生自己去发现,因为通过学生自己发现的知识,学生理解的最深刻,最容易掌握。因此,在数学教学中,教师应提供给学生一种自我探索、自我思考、自我创造、自我表现和自我实现的实践机会,使学生最大限度的投入到观察、思考、操作、探究的活动中。
《三角形的内角和》教学反思2备学提纲:
1、你能用哪些方法验证“三角形的内角和是180°”这一猜想?至少想出两种。写出具体的操作过程。
2、阅读课本P28-29,记下收获和问题。
3、准备三个锐角三角形,三个直角三角形,三个钝角三角形和一张正方形纸。
批阅了孩子们的预习作业,亮点是孩子开始会提问题了,如:
1、什么是内角?
2、两个三角尺拼成一个三角形,这个三角形的内角和是多少?是360°吗
3、两个三角形拼成一个大三角形,画出来的时候中间有1竖,1竖两边的直角为什么不算呢?
4、所有的三角形的内角和都是180°吗?
5、用正方形纸折几次,才有8个三角形呢?
6、既然有内角那有没有外角呢?如果有外角,那外角的度数是和内角的一样吗?
存在的问题:
1、孩子们想到的验证内角和的方法局限在:用计算直角三角形的各个角的度数的`和;画一个三角形,量出每个角的度数再计算。只有一人(季##提到用折的方法来验证,看来,孩子们还是不会读数学课本,没有看懂课本上图示的折的过程,要加强阅读课本的指导,这是以前忽视阅读文本带来的不良结果,直接影响了孩子们的自学能力。
2、我设计的预习题,没能从学生的实际出发,我觉得孩子们已经知道了三角形的内角和是180°,就没有引导他们去理解什么叫内角?这也是孩子们不知如何去验证内角和的一个原因。
今天的课堂,花了一些时间指导孩子如何阅读课本,尤其是阅读课本上的图,看着课本上的图示来操作,所以教学环节不那么紧凑了,印象最深的是:
孙##和陈##两个有些内向的女孩子,在课堂上能主动站起来说出自己的想法,带着自己的三角形到前面来演示如何用折的方法验证三角形的内角和是180°。刘##今天能主动补充别人的回答。
每一个孩子都充满着无穷的潜力,他们暂时的落后,是因于学习对象没有激起他们的兴趣,是因为缺少一个能挖掘潜力的人!
《三角形的内角和》教学反思3本节课采用逐步设置疑问,让学生动手、动脑、动口,积极参与知识学习的全过程,渗透多观察、动脑想、大胆猜、勤钻研的研讨式学习方法,培养了学生学习数学的兴趣,给学生提供更多的活动机会和空间,使学生在参与的过程中得到充足的体验和发展。
“大胆猜想,小心求证”是科学探究的普遍规律,也是获取知识的一条重要途径。在学生已有知识的基础上,类比猜想四边形的内角和,通过测量、计算,讨论、交流、总结出四边形的内角和为360°的规律的结论。亲身体验所得的`知识,会掌握得更加牢固。引导学生学会探究总结事物所含的数学规律,提高了学生综合运用知识去解决问题的能力。探究过程中,归纳、猜想和验证的数学思想渗透,使学生感悟到数学的神奇和奥妙,提高了学生学习数学的兴趣,增强了学好数学的信心。
《三角形的内角和》教学反思4课程将探究式学习作为学生学习的主要方式之一,着重点放在让学生在主动参与的过程中进行学习,在探究问题的活动中获取知识并主动建构新的认知结构,了解获取知识的途径和技巧。
这节课我设计了以“观察—猜想—验证—应用”为主线,让学生在自主学习中“不知不觉”学习到新的知识。在学生猜测三角形内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最后达成共识。
这节课我创设了学生喜欢的情境:“三个三角形的争吵”入手,让学生自己动手探索三角形的内角和。让学生“量一量”、“剪—拼”、贴近了学生的生活,降低了学习难度,注重学生们的动手实践,亲生去体验去感悟。
在操作反馈的过程中我提出了两个问题:第一,你选用什么三角形,采用什么方法来验证;
第二,经过操作得到什么结论。学生分小组对大小不一的三角形进行验证,经历量、剪、拼一系列操作活动,从而得出“三角形内角和是180°”这一结论。
本节课不足之处:
1、 学生在还没学习三角形的.特性和三角形三边的关系及三角形的内角和的基础上进行学习三角形内角和。就无法复习三角形的有关知识。
2、在解决三角形内角和是什么这个问题,说的不够透彻,课后我改成这样,先让两个学生说,说完让一个学生指出来,让他用黑色水笔画出来。为验证三角形内是180度做铺垫。
3、学生在介绍剪拼的方法时,可以让介绍的学生先上台演示是如何把内角拼在一起,这样学生在动手操作的时候就可以节省时间。而且由于内角和这个概念没有讲清楚,学生在这一环节花了一定的时间。
4、在学生汇报方法时,还应该用尺子比一下拼后的三个角是在一 条直线上,更直观的说明三个角形成一个平角,三角形的内角和是180°。
……此处隐藏8645个字……明白,任意三角形都有二个锐角,因此直角三角形的定义是有一个角是直角的三角形叫直角三角形;钝角三角形的定义是有一个钝角的三角形叫钝角三角形;而锐角三角形则必须是三个角都是锐角的三角形才是锐角三角形的道理。这道题有助于帮助学生解决三角形按角分的定义的理解。第二道题是一个三角形最大角是60°,它是什么三角形?通过对此题的研究,使学生发现判断是什么三角形主要看最大角的大小,如果最大角是锐角,也可以判断是锐角三角形。同时加深了学生对等边三角形的特点的认识和理解。第三题我拓展延伸到三角形外角,第四题我设计了多边形的内角和的探究。
《三角形的内角和》教学反思12新课标提出“人人学有价值的数学”。强调“教学要从学生已有的经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程。
要激发学生的学习积极性,向学生提供充分从事数学活动的机会,让他们积极主动地探索,解决数学问题,发现数学规律,获得数学经验;而教师只是学生学习的组织者、引导者和合作者,在全面参与和了解学生的学习过程中起着对学生进行积极的评价,关注他们的学习方法、学习水平和情感态度,促使学生向着预定的目标发展的作用”。
根据这一教学理念来设计这堂课。引导学生小组合作,出示不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差),再引导学生通过剪拼的.方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列活动潜移默化地向学生渗透了“转化”数学思想,为后继学习奠定了必要的基础。最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。练习形式具有趣味性,激发了学生主动解题的积极性。
总之,在上课的过程中,给了我学习的机会,在今后教学过程中该如何预设好每一环节,如何说好每一句话,让自己的课堂效率更高。
《三角形的内角和》教学反思13我在讲“认识三角形”时,“三角形内角和等于180度”这一结论学生早知晓,为什么三角形内角和会一样?
这也正是我本节课要与学生共同研究的问题。这时学生想说为什么又不知怎么说,又因不知道怎么说而感情特别激动。处于这种状态的学生注意力特别集中,学习兴趣异常高涨,到了一触即发的地步。于是我让他们将课前准备好的`三角形拿出来进行研究,学生通过折一折、拼一拼、剪一剪、之后找到自己的验证方法时,他们体验了成功,也学会了学习。在这节课中我们共同找到了几种验证三角形内角和是180°方法。学生们拿着他们手中的三角形,在讲台上讲述自己的验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。
有的学生将三角形的三个角都撕下来拼接到一起,有的同学将三角形的三个角沿着三角形的中位线折到一起……其中有一组同学竟然用稚嫩的声音说:可以用数学方法来证明。于是他们阐述自己借助与三角形底边平行的线与三角形所形成的内错角进行证明的方法。
至此学生完成了感性认识到理性认识的转化过程,充分展示了数学地思维方式和思想方法。
《三角形的内角和》教学反思14本节课的重点是引导学生探究三角形的内角和, 同时还要使学生学会用三角形的内角和是180°来解决有关计算问题。
课程开始前,我让学生计算三角尺的3个内角的和,很自然地引出了“其它三角形的内角和是否也是180°吗? ”的猜想。当时有同学说不是,又有同学说是的。我告诉学生:任何一项科学研究或发明创造都要经历从猜想到验证的过程。那么这个猜想可以用什么方法来证明呢?大部分同学首先想到先任意画一个三角形,再用量角器量一量的方法,我让学生去画去量了,结果有些学生量出的内角和的度数要高于180°或低于180°,我让学生讨论一下有哪些因素会影响到研究结果的准确性。过后,我引导学生:180度是什么角?我们能否把三个内角转化一下呢?经过这么一提示学生想到把三个角剪下来拼成一个平角,还有学生想到折的方法。学生在操作过程中受到了启发,最后学生得出:任意三角形的内角和都是180°。学生在动手操作中享受到了学习数学的乐趣。后面通过一系列的练习活动,学生进一步明确三角形的内角和与三角形的大小无关,并体会到求直角三角形的一个锐角可以直接用90°减另一个锐角的度数来计算,培养了学生思维的`灵活性,对三角形的内角和也有了更清晰的认识了。
第二次课我从学生常用的一副三角板出发,让学生说说每个角的度数,以及三个内角的度数和,有学生说出三角形的内角和是180度,我就接着问:为什么三角形的内角和是180度?是不是所有的三角形的内角和都是180度呢?学生无语。接下来,我就让学生将课前准备好的三角形拿出来进行研究,可以增强学生的主体意识与参与意识。当学生通过折一折、拼一拼、撕一撕、画一画之后找到自己的验证方法时,他们体验了成功,也学会了学习。在这节课中我们共同找到了几种验证三角形内角和是180°方法。学生们拿着他们手中的三角形,讲述自己的验证方法,虽然有的方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。在此过程中,我关注的重点除了学生最后论证的结果,更重要的是关注了学生思维的过程。
《三角形的内角和》教学反思15《课程标准》倡导探究性学习,力图改变学生的学习方式,引导学生主动参与、乐于探究、勤于动手,逐步培养学生收集和处理科学信息的能力、获取新知识的能力、分析和解决问题的能力,以及交流与合作的能力等,突出创新精神和实践能力的培养。探究三角形内角和的过程的时候,我注意鼓励学生通过动手操作、小组合作的方法去探究,并利用多媒体去验证学生的结论,最终得到三角形的内角和都是180°。
给学生一些问题,让他们自己去探索;给学生一片空间,让他们自己飞翔。“为什么不能画出有两个直角的三角形?三角形的内角度数有何奥秘?”这正是小组合作的契机。通过小组内交流,让学生在小组内完成从特殊到一般的`研究过程。教师引导学生通过测量、剪拼、折拼等实际操作,建立解决问题的目标意识,形成学习的氛围,给学生更多的自主学习、合作学习的机会,促进学生的主体参与意识。在此基础上,教师通过多媒体动画演示,让学生更直观、更清晰地观察到剪拼、折拼的过程,进一步验证探究结论。同学们通过自主实践、合作探究完成了本节课的教学任务。
整节课的练习设计,由易到难。在应用“三角形内角和是180°”这一结论时,第一、二层练习是已知三角形两个内角的度数,求另一个角和简单的判断题。第三层练习是求特殊三角形内角的度数,真正做到了三角形内角和知识与三角形特点的有机结合。
在实际教学中,我多次利用超级画板、flash动画,从开始的激趣引入、观察猜想,到后来的数据验证,多媒体在整个教学中起到了不可忽视的辅助作用。另外,参与学生的探究活动是我教学的一大特点,询问、点拨、交流,使学生都能积极参与到合作学习之中,更好地完成教学任务。同时我也发现,学生在合作探究中的组织如合理分工、有效合作等方面不够科学合理,还需更具体的指导,以使每位学生都能真正参与,让合作探究更有效。