
初一数学教学反思13篇
作为一名人民教师,我们的任务之一就是教学,通过教学反思可以有效提升自己的课堂经验,写教学反思需要注意哪些格式呢?以下是小编整理的初一数学教学反思,欢迎大家借鉴与参考,希望对大家有所帮助。
初一数学教学反思 篇1结合初中数学大纲,就初中数学教材进行数学思想方法的教学研究,要通过对教材完整的分析和研究,理清和把握教材的体系和脉络,统揽教材全局,高屋建瓴。然后,建立各类概念、知识点或知识单元之间的界面关系,归纳和揭示其特殊性质和内在的一般规律。例如,在“因式分解”这一章中,我们接触到许多数学方法—提公因式法、运用公式法、分组分解法、十字相乘法等。这是学习这一章知识的重点,只要我们学会了这些方法,按知识──方法──思想的顺序提炼数学思想方法,就能运用它们去解决成千上万分解多项式因式的问题。又如:结合初中代数的消元、降次、配方、换元方法,以及分类、变换、归纳、抽象和数形结合等方法性思想,进一步确定数学知识与其思想方法之间的结合点,建立一整套丰富的教学范例或模型,最终形成一个活动的知识与思想互联网络。
以数学知识为载体,将数学思想方法有机地渗透入教学计划和教案内容之中 教学计划的制订应体现数学思想方法教学的综合考虑,要明确每一阶段的载体内容、教学目标、展开步骤、教学程序和操作要点。数学教案则要就每一节课的概念、命题、公式、法则以至单元结构等教学过程进行渗透思想方法的具体设计。要求通过目标设计、创设情境、程序演化、归纳总结等关键环节,在知识的发生和运用过程中贯彻数学思想方法,形成数学知识、方法和思想的一体化。应充分利用数学的现实原型作为反映数学思想方法的基础。数学思想方法是对数学问题解决或构建所做的整体性考虑,它来源于现实原型又高于现实原型,往往借助现实原型使数学思想方法得以生动地表现,有利于对其深人理解和把握。例如:分类讨论的思想方法始终贯穿于整个数学教学中。在教学中要引导学生对所讨论的对象进行合理分类(分类时要做到不重复、不遗漏、标准统一、分层不越级),然后逐类讨论(即对各类问题详细讨论、逐步解决),最后归纳总结。教师要帮助学生掌握好分类的方法原则,形成分类思想。数学思想方法的渗透应根据教学计划有步骤地进行。一般在知识的概念形成阶段导入概念型数学思想,如方程思想、相似思想、已知与未知互相转化的思想、特殊与一般互相转化的思想等等。在知识的结论、公式、法则等规律的推导阶段,要强调和灌输思维方法,如解方程的如何消元降次、函数的数与形的转化、判定两个三角形相似有哪些常用思路等。在知识的总结阶段或新旧知识结合部分,要选配结构型的数学思想,如函数与方程思想体现了函数、方程、不等式间的相互转化,分数讨论思想体现了局部与整体的相互转化。在所有数学建构及问题的处理方面,注意体现其根本思想,如运用同解原理解一元一次方程,应注意为简便而采取的移项法则。
重视课堂教学实践,在知识的引进、消化和应用过程中促使学生领悟和提炼数学思想方法 数学知识发生的过程也是其思想方法产生的过程。在此过程中,要向学生提供丰富的、典型的以及正确的直观背景材料,创设使认知主体与客体之间激发作用的环境和条件,通过对知识发生过程的展示,使学生的思维和经验全部投人到接受问题、分析问题和感悟思想方法的挑战之中,从而主动构建科学的认知结构,将数学思想方法与数学知识融汇成一体,最终形成独立探索分析、解决问题的能力。概念既是思维的基础,又是思维的结果。恰当地展示其形成的过程,拉长被压缩了的“知识链”,是对数学抽象与数学模型方法进行点悟的极好素材和契机。在概念的引进过程中,应注意:
①解释概念产生的背景,让学生了解定义的合理性和必要性;
②揭示概念的形成过程,让学生综合概念定义的本质属性;
③巩固和加深概念理解,让学生在变式和比较中活化思维。在规律(定理、公式、法则等)的揭示过程中,教师应注意灌输数学思想方法,培养学生的探索性思维能力,并引导学生通过感性的直观背景材料或已有的'知识发现规律,不过早地给结论,讲清抽象、概括或证明的过程,充分地向学生展现自己是如何思考的,使学生领悟蕴含其中的思想方法。
通过范例和解题教学,综合运用数学思想方法一方面要通过解题和反思活动,从具体数学问题和范例中总结归纳解题方法,并提炼和抽象成数学思想;另一方面在解题过程中,充分发挥数学思想方法对发现解题途径的定向、联想和转化功能,举一反三,触类旁通,以数学思想观点为指导,灵活运用数学知识和方法分析问题、解决问题。范例教学通过选择具有典型性、启发性、创造性和审美性的例题和练习进行。要注意设计具有探索性的范例和能从中抽象一般和特殊规律的范例,在对其分析和思考的过程中展示数学思想和具有代表性的数学方法,提高学生的思维能力。例如,对某些问题,要引导学生尽可能运用多种方法,从各条途径寻求答案,找出最优方法,培养学生的变通性;对某些问题可以进行由简到繁、由特殊到一般的推论,让学生大胆联系和猜想,培养其思维的广阔性;对某些问题可以分析其特殊性,克服惯性思维束缚,培养学生思维的灵活性;对一些条件、因素较多的问题,要引导学生全面分析、系统综合各个条件,得出正确结论,培养其横向思维等等。此外,还要引导学生通过解题以后的反思,优化解题过程,总结解题经验,提炼数学思想方法。
初一数学教学反思 篇2初一是我校学究将用新模式的试点年级,所以我对教学过程中存在的问题还缺乏意识或者有时候抓不住重点和难点,缺乏对教学诊断、调整、纠错的能力。在实际教学过程中,我逐渐提高对教学过程中问题的敏感度,养成对教学的自觉反思,阶段经验总结,遵循“先学后教”的教学原则,不断提升自己的教育教学能力。
作为一名年轻的数学教师,其首要任务是树立正确的数学观,积极地自觉地促进自己的观念改变,以实现由静态的、片面的数学观向动态的、辩正的数学观的转变,特别是实现对上述问题的不自觉的认识向自觉认识的转化。
对于初一数学教育教学工作,我对以下几个方面进行了反思:
一、反思教学目标
教学目标是教学设计中的首要环节,是一节课的纲领,对纲领认识不清或制定错误必定注定打败仗。对于我们新分教师来说我自认为有以下几点不足:
一是对教学目标设计思想上不足够重视,目标设计流于形式。
二是教学目标设计关注的仍然只是认知目标,对“情感目标”、“能力目标”有所忽视,重视的是知识的灌输、技巧的传递,严重忽视了教材的育人功能。
三是教学目标的设计含混,不够全面、开放。
教学目标的制定要符合学生的认知程序与认知水平。制定的教学目标过高或过低都不利于学生发展,要让学生跳一跳摘到桃子。“这么简单的题都做不出来”、“这道题都讲过几遍了还不会做”,碰到这样情况,教师不应埋怨学生,而要深刻反思出现这样状况到底是什么原因,是 ……此处隐藏14557个字……上找表示点时,采用直观演示,使学生更加直观地看到了任意一个无理数都可以在数轴上找到一个点和它对应,降低问题的难度,学生很容易就接受了,从而扩展了数学空间。
三、增强了提问的有效性。
在这节课中,有这几个问题提的很好: 1、 化成小数是一个什么样的数呢?你能根据有理数的分类方法对实数进行分类吗?2、有理数可以在数轴上表示出来,那么无理数又如何?实数呢?这些提问在教学中一方面为学生提问起了示范作用,另一方面为顺利完成教学任务奠定了基础。
当然,从课堂上学生的反应情况看我知道了我自身的欠缺。
一是时间安排较紧。对学生而言,只看问题的表面,不能够举一反三,同一题目不能归类去解决,造成做练习时花费了过多的时间;对我而言,由于第一次给这些学生上课,把学生的程度估计太高,题量大、难度也有点大,致使有些学生在有限的时间内不能及时回答问题,造成时间的浪费。
二是鼓励性语言使用得不够多,没有大面积调动学生回答问题的积极性。另外,有的同学回答问题后没有及时给予肯定。
总之,本次教学,我坚持从兴趣入手,从差异入手,做到了在细致处求真求创意,真正地使学生表明自己的看法,阐述自己的观点,大胆表现自我,张扬个性,体现出他们这个年龄应有的特点,因此,我认为这节课不仅很好地实现了知识与技能目标,对于过程与方法和情感态度与价值观两个目标的实现也非常到位,是比较成功的。
在今后的教学中,我将不断追求更高目标,努力使自己的课堂教学更加生动、活泼,使学生真正在快乐中学习,享受学习的快乐。
“0是表示有还是没有?”“三角形的内角和是多少度?”这是一种常见的问题教学的设问方式。
在具体施行教学的过程中,根深蒂固的传统教育的局限性仍然不时地蚕食着我们依然幼稚的创新思维。其一,原有初中数学教材、大纲、教学理念和教学方式的影响残存,或多或少地抑止了教师思维发展的进程,束缚了学生综合素质的提高。这十分不利于初一数学教与学的和谐发展,也与时代的创新发展格格不入。其二,原有的以考试为目的、以灌输为手段、以教师为中心、以死记硬背为特点的教育教学模式在初一数学教学中仍然没有根本改变,其现实的残缺存在与“强调课程实施过程中的学习方式和教学方式的改变”的理念大相径庭,已经越来越变成一种遏制学生自由探索、发现或提出问题的障碍。其三,不少教师的七年级数学“问题教学”采取的是简单的“教师问与学生答”或者“学生问与教师答”的问答式教学,有的是教师一问到底,或者放羊式地、不加指导地、单一地让学生泛化提问,因此不可能使学生在疑问与释问的自主学习过程中自觉培养创新精神。
有效实施问题教学的策略,我觉得可以按照以下逻辑思维展开探讨:
一、努力培养学生问题意识,是有效实施问题教学的前提。所谓问题意识是指学习者个体在学习认知活动中,面对难以解决的问题时所产生的一种困惑、焦虑与主动怀疑、探究的心理状态或倾向。如果没有强烈的问题意识,牛顿就不可能从“苹果落地”的简单常见问题中发现“万有引力定律”。可见,“提出一个问题比解决一个问题更重要”。
现阶段,不少地方已经把培养学生的问题意识作为评价课堂教学的重要指标。我们的数学课堂如果依旧残存“以知识传授为中心”的教学,势必就会造就没有问题的课堂:七年级老师“满堂灌”、学生“死水一潭”。因此,在教学中,我们应努力让学生喜欢提问或爱提问、好提问。例如,在“正数和负数”教学中,为了加深对该概念的理解,并开拓思维,可以预先让学生收看电视台的天气预报气温图、观察温度计上的刻度、查找地图册中的地形高低地形图、查阅父母亲存折或工资卡中存取钱的记录页面等,然后在课堂上让学生介绍他了解的知识,同时要求其他学生向他提问,从而使学生在自主学习和相互提问的过程中发现问题,产生各种各样的问题意识。
二、教师精心组织设问,是有效实施问题教学的基础。
为了有效实施教学过程中的问题教学,必须积极超前准备与目标提问相关的设问因素。这里的设问包括教师如何提问与如何引导学生提问。
一般来说,衡量问题教学提问效果的关键,主要是考察提出的问题能否帮助教师最有效地实现教学目标。为此,教师要十分注意提问的策略。第一,提问的.针对性即提问的对象与层次:根据不同层次或不同特点的学生设计不同的提问,并通过不同的提问技巧促进教学目标的实现。例如,在“有理数的加法”教学中,我常设问:①正数与负数相加时,实质上就是把加法运算转化为“小学”的减法运算,对吗?②如果两个数都是负数,它们的和一定是负数吗,为什么?③如果两个数的和是负数,这两个数一定都是负数吗,为什么?教师引导有助于帮助学生在讨论中归纳出有理数加法的一般法则,良好地实现教学目标。第二,提问的
水平:提出的问题必须与教学目标或内容、学生的需要和特点相适应。有些教师的提问常常停留在“是不是”、“对不对”、“好不好”等思维度缺少的乏味方式上,没能拓展学生的思维。第三,注意提问的程序性即顺序性。例如,讲授相反数知识,教师要依次明确设问:相反数的定义;互为相反数的数在数轴上表示的点的特征;怎样求一个数的相反数;怎样表示一个数的相反数。第四,注意问题的可反思性或思想性。教师应根据知识的实际和学生主体的现状引导设计出学生跳一下就可解决的问题。例如,在“多边形”的教学中,教师可设问:三角形的内角和是多少度?四边形的内角和是多少度?五边形呢?正多边形呢?不规则多边形呢?
三、学生敢于善于提问,是有效实施问题教学的关键。
1.在教学过程中,要让学生敢于提出问题,教师必须努力转变教育观念,营造民主和谐的教学氛围,积极鼓励学生锻炼提问的勇气或胆量。
2.在数学教学过程中,为了鼓励学生善于提问,教师必须精心设计疑问,引发学生的认知冲突和学习数学的浓厚兴趣,使其能够积极主动地想问问题或想提问题。
怎样设疑激发学生探究学习数学的兴趣呢?古人云:“学起于思,思源于疑。”探究始于问题,问题源于情境。因此,教师要高度注重问题情境的创设,诸如利用热点、多媒体、小实验、生产生活趣事等,改革知识的呈现方式和呈现契机,动摇学生已有的认知结构平衡状态,引发其认知冲突,诱发其问题意识,从而使其确实感到有问题需要去解决。例如,我们可联系鸟巢体育馆的建筑构造谈图形等,借此激发学生的学习和质疑兴趣。
四、提供足够的时间空间,是有效实施问题教学的保障。
在教学实践中,我们还必须采取哪些措施以保障问题教学时“学生为本”理念的真正践行?
其一,我们必须保证在学生有时间思考、有时间提问,不能一灌到底;要鼓励学生标新立异、异想天开,认真品尝自己提出问题、解决问题的快乐。其二,我们要注重引导学生参加数学教学实践,包括观察、实验、参观访问、调查、室外考察、图形制作等活动,向实践学习,在实践中自思、自疑、自问。
时代发展日新月异,越来越需要我们数学教育工作者不断坚持以学生发展为本,以改变学习方式为突破口,重点培养学生的创新精神和实践能力。新时期的问题教学还有许多现实的问题有待于我们去摸索、去探讨、去解决。