当前位置:首页 > 教学范文 > 教案

二次根式教案范文合集5篇

时间:2023-04-18 01:07:13 收藏本文
二次根式教案范文合集5篇

二次根式教案范文合集5篇

作为一名默默奉献的教育工作者,时常会需要准备好教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。我们该怎么去写教案呢?下面是小编精心整理的二次根式教案5篇,仅供参考,大家一起来看看吧。

二次根式教案 篇1

教学目的

1.使学生掌握最简二次根式的定义,并会应用此定义判断一个根式是否为最简二次根式;

2.会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。

教学重点

最简二次根式的定义。

教学难点

一个二次根式化成最简二次根式的方法。

教学过程

一、复习引入

1.把下列各根式化简,并说出化简的`根据:

2.引导学生观察考虑:

化简前后的根式,被开方数有什么不同?

化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。

3.启发学生回答:

二次根式,请同学们考虑一下被开方数符合什么条件的二次根式叫做最简二次根式?

二、讲解新课

1.总结学生回答的内容后,给出最简二次根式定义:

满足下列两个条件的二次根式叫做最简二次根式:

(1)被开方数的因数是整数,因式是整式;

(2)被开方数中不含能开得尽的因数或因式。

最简二次根式定义中第(1)条说明被开方数不含有分母;分母是1的例外。第(2)条说明被开方数中每个因式的指数小于2;特别注意被开方数应化为因式连乘积的形式。

2.练习:

下列各根式是否为最简二次根式,不是最简二次根式的说明原因:

3.例题:

例1 把下列各式化成最简二次根式:

例2 把下列各式化成最简二次根式:

4.总结

把二次根式化成最简二次根式的根据是什么?应用了什么方法?

当被开方数为整数或整式时,把被开方数进行因数或因式分解,根据积的算术平方根的性质,把开得尽方的因数或因式用它的算术平方根代替移到根号外面去。

当被开方数是分数或分式时,根据分式的基本性质和商的算术平方根的性质化去分母。

此方法是先根据分式的基本性质把被开方数的分母化成能开得尽方的因式,然后分子、分母再分别化简。

三、巩固练习

1.把下列各式化成最简二次根式:

2.判断下列各根式,哪些是最简二次根式?哪些不是最简二次根式?如果不是,把它化成最简二次根式。

二次根式教案 篇2

一、内容解析

本节教材是在学生学习二次根式概念的基础上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和思考得到二次根式的两个基本性质.

对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过 “探究”栏目中给出四个具体问题,让学生学生根据算术平方根的意义,就具体数字进行分析得出结果,再分析这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析,确定本节课的教学重点为:理解二次根式的性质.

二、目标和目标解析

1.教学目标

(1)经历探索二次根式的性质的过程,并理解其意义;

(2)会运用二次根式的性质进行二次根式的化简;

(3)了解代数式的概念.

2.目标解析

(1)学生能根据具体数字分析和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;

(2)学生能灵活运用二次根式的性质进行二次根式的化简;

(3)学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.

三、教学问题诊断分析

二次根式的性质是二次根式化简和运算的重要基础.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵活运用二次根式的性质进行二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的灵活运用存在一定的困难,突破这一难点需要教师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵活运用的能力.

本节课的教学难点为:二次根式性质的灵活运用.

四、教学过程设计

1.探究性质1

问题1 你能解释下列式子的.含义吗?

师生活动:教师引导学生说出每一个式子的含义.

【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方.

问题2 根据算术平方根的意义填空,并说出得到结论的依据.

师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.

【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.

问题3 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?

师生活动:引导学生归纳得出二次根式的性质: ( ≥0).

【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力.

例2 计算

(1)

(2)

师生活动:学生独立完成,集体订正.

【设计意图】巩固二次根式的性质1,学会灵活运用.

2.探究性质2

问题4 你能解释下列式子的含义吗?

师生活动:教师引导学生说出每一个式子的含义.

【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.

问题5 根据算术平方根的意义填空,并说出得到结论的依据.

师生活动 学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.

【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.

问题6 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?

师生活动:引导学生归纳得出二次根式的性质: ( ≥0)

【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力.

例3 计算

(1)

(2)

师生活动:学生独立完成,集体订正.

【设计意图】巩固二次根式的性质2,学会灵活运用.

3.归纳代数式的概念

问题7 回顾我们学过的式子,如 ___________ ( ≥0),这些式子有哪些共同特征?

师生活动:学生概括式子的共同特征,得得出代数式的概念.

【设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力.

4.综合运用

(1)算一算:

【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,第(2)、(3)、(4)小题要特别注意结果的符号.

(2)想一想: 中, 的取值范围是什么?当 ≥0时, 等于多少?当 时, 又等于多少?

【设计意图】通过此问题的设计,加深学生对 的理解,开阔学生的视野,训练学生的思维.

(3)谈一谈你对 与 的认识.

【设计意图】加深学生对二次根式性质的理解.

5.总结反思

(1)你知道了二次根式的哪些性质?

(2)运用二次根式性质进行化简需要注意什么?

(3)请谈谈发现二次根式性质的思考过程?

(4)想一想,到现在为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.

6.布置作业:教科书习题16.1第2,4题.

二次根式教案 篇3

目 标

1. 熟练地运用二次根式的性质化简二次根式;

2. 会运用二次根式解决简单的实际问题;

3. 进一步体验二次根式及其运算的实际意义和应用价值。

教学设想

本节课的重点是:二次根式及其运算的实际应用;难点是:例7涉及多方面的知识和综合运用,思路比较复杂。

教 学 程序 与 策 略

一、预习检测

1.解决节前问题:

如图,架在消防车上的云梯AB长为15m,AD:BD=1 :0.6,云梯底部离地面的距离BC为2m。你能求出云梯的顶端离地面的距离AE吗?

归纳:

在日常生活和生产实际中,我们在解决一 些问题,尤其是涉及直角三角形边长计算的问题时经常用到二次根式及其运算。

二、合作交流:

1、:如图,扶梯AB的坡比(BE与AE的长度之比)为1:0.8,滑梯CD的坡比为1:1.6,AE= 米,BC= CD。一男孩从扶梯走到滑梯的顶部,然后从滑梯滑下,他经过了多少路程(结果要求先化简,再取近似值,精确到0.01米)

让学生有充分的时间阅读问题,并结合图形分析问题:(1)所求的路程实际上是哪些线段的和?哪些线段的长是已知的?哪些线段的长是未知的'?它们之间有什么关系?(2)列出的算式中有哪些运算?能化简吗?

注意解题格式

教 学 程 序 与 策 略

三、巩固练习:

完成课本P17、1,组长检查反馈;

四、拓展提高:

1:如图是一张等腰三角形彩色纸,AC=BC=40cm,将斜边上的高CD四等分,然后裁出3张宽度相等的长方形纸条。(1)分别求出3张长方形纸条的长度。(2)若用这些纸条为一幅正方形美术作品镶边(纸条不重叠),如右图,正方形美术作品的面积最大不能超过多少cm。

师生共同分析解题思路,请学生写出解题过程。

五、课堂小结:

1.谈一谈:本节课你有什么收获?

2.运用二次根式解决简单的实际问题时应注意的的问题

六、堂堂清

1: 作业本(2)

2:课本P17页:第4、5题选做。

二次根式教案 篇4

一、内容和内容解析

1.内容

二次根式的概念.

2.内容解析

本节课是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念. 它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础.

教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义. 再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解.

本节课的教学重点是:了解二次根式的概念;

二、目标和目标解析

1.教学目标

(1)体会研究二次根式是实际的需要.

(2)了解二次根式的概念.

2. 教学目标解析

(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性.

(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围.

三、教学问题诊断分析

对于二次根式的定义,应侧重让学生理解 “ 的双重非负性,”即被开方数 ≥0是非负数, 的算术平方根 ≥0也是非负数.教学时注意引导学生回忆在实数一章所学习的有关平方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断.

本节课的教学难点为:理解二次根式的双重非负性.

四、教学过程设计

1.创设情境,提出问题

问题1你能用带有根号的的式子填空吗?

(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.

(2)一个长方形围栏,长是宽的2 倍,面积为130?,则它的宽为______.

(3)一个物体从高处自由落下,落到地面所用的时间 t(单位:s)与开始落下的高度h(单位:)满足关系 h =5t?,如果用含有h 的式子表示 t ,则t= _____.

师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价.

【设计意图】让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.

问题2 上面得到的式子 , , 分别表示什么意义?它们有什么共同特征?

师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.

【设计意图】为概括二次根式的概念作铺垫.

2.抽象概括,形成概念

问题3 你能用一个式子表示一个非负数的算术平方根吗?

师生活动:学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如 (a≥0)的式子叫做二次根式,“ ”称为二次根号.

【设计意图】让学生体会由特殊到一般的过程,培养学生的概括能力.

追问:在二次根式的概念中,为什么要强调“a≥0”?

师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由.

【设计意图】进一步加深学生对二次根式被开方数必须是非负数的理解.

3.辨析概念,应用巩固

例1 当 时怎样的实数时, 在实数范围内有意义?

师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解.

例2 当 是怎样的实数时, 在实数范围内有意义? 呢?

师生活动:先让学生独立思考,再追问.

【设计意图】在辨析中,加深学生对二次根式被开方数为非负数的理解.

问题4 你能比较 与0的大小吗?

师生活动:通过分 和 这两种情况的讨论,比较 与0的大小,引导学生得出 ≥0的结论,强化学生对二次根式本身为非负数的.理解,

【设计意图】通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生分类讨论和归纳概括的能力.

4.综合运用,巩固提高

练习1 完成教科书第3页的练习.

练习2 当x 是什么实数时,下列各式有意义.

(1) ;(2) ;(3) ;(4) .

【设计意图】 辨析二次根式的概念,确定二次根式有意义的条件.

【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,开阔学生的视野,训练学生的思维.

5.总结反思

教师和学生一起回顾本节课所学主要内容,并请学生回答以下问题.

(1)本节课你学到了哪一类新的式子?

(2)二次根式有意义的条件是什么?二次根式的值的范围是什么?

(3)二次根式与算术平方根有什么关系?

师生活动:教师引导,学生小结.

【设计意图】:学生共同总结,互相取长补短,再一次突出本节课的学习重点,掌握解题方法.

6.布置作业:

教科书习题16.1第1,3,5, 7,10题.

五、目标检测设计

1. 下列各式中,一定是二次根式的是( )

A. B. C. D.

【设计意图】考查对二次根式概念的了解,要特别注意被开方数为非负数.

2. 当 时,二次根式 无意义.

【设计意图】考查二次根式无意义的条件,即被开方数小于0,要注意审题.

3.当 时,二次根式 有最小值,其最小值是 .

【设计意图】本题主要考查二次根式被开方数是非负数的灵活运用.

4.对于 ,小红根据被开方数是非负数,得 出的取值范围是 ≥ .小慧认为还应考虑分母不为0的情况.你认为小慧的想法正确吗?试求出 的取值范围.

【设计意图】考查二次根式的被开方数为非负数和一个式子的分母不能为0,解题时需要综合考虑.

二次根式教案 篇5

【 学习目标 】

1、知识与技能:了解二次根式的概念,能求根号内字母范围,理解二次根式的双重非负性,并能应用它解决相关问题。

2、过程与方法:进一步体会分类讨论的数学思想。

3、情感、态度与价值观:通过小组合作学习,体验在合作探索中学习数学的乐趣。

【 学习重难点 】

1、重点:准确理解二次根式的概念,并能进行简单的计算。

2、难点:准确理解二次根式的双重非负性。

【 学习内容 】课本第2— 3页

【 学习流程 】

一、 课前准备(预习学案见附件1)

学生在家中认真阅读理解课本中相关内容的知识,并根据自己的理解完成预习学案。

二、 课堂教学

(一)合作学习阶段。

教师出示课堂教学目标及引导材料,各学习小组结合本节课学习目标,根据课堂引导材料中得内容,以小组合作的形式,组内交流、总结,并记录合作学习中碰到的问题。组内各成员根据课堂引导材料的`要求在小组合作的前提下认真完成课堂引导材料。教师在巡视中观察各小组合作学习的情况,并进行及时的引导、点拨,对普遍存在的问题做好记录。

(二)集体讲授阶段。(15分钟左右)

1. 各小组推选代表依次对课堂引导材料中的问题进行解答,不足的本组成员可以补充。

2. 教师对合作学习中存在的普遍的不能解决的问题进行集体讲解。

3. 各小组提出本组学习中存在的困惑,并请其他小组帮助解答,解答不了的由教师进行解答。

(三)当堂检测阶段

为了及时了解本节课学生的学习效果,及对本节课进行及时的巩固,对学生进行当堂检测,测试完试卷上交。

(注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)

三、 课后作业(课后作业见附件2)

教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。

四、板书设计

课题:二次根式(1)

二次根式概念 例题 例题

二次根式性质

反思:

《二次根式教案范文合集5篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式