当前位置:首页 > 教学范文 > 教案

中位数和众数教案

时间:2023-04-03 23:14:47 收藏本文
中位数和众数教案

中位数和众数教案

作为一位优秀的人民教师,时常要开展教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么教案应该怎么写才合适呢?以下是小编帮大家整理的中位数和众数教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

中位数和众数教案1

第一步;理解体验:

1、复习平均数、中位数和众数定义

2、引入课本P146R的例子

思路点拨:商场统计每位营业员在某月的销售额组成一个样本,从样本数据中的平均数、中位数、众数中得到信息估计总体的趋势,达到问题的解决。

由例题中(2)问和(3)问的不同,导致结果的不同,其目的是告诉学生应该根据题目具体要求来灵活运用三个数据代表解决问题。

本例题也客观的反映了数学知识对生活实践的指导有重要的意义,也体现了统计知识与生活实践是紧密联系的。

第二步:总结提升:

平均数、众数和中位数这三个数据代表的异同:

平均数、中位数和众数都可以作为一组数据的代表,主要描述一组数据集中趋势的量。平均数是应用较多的一种量

平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的影响较大.

众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少也不受极端值的影响.

平均数的大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应引起平均数的变动.

中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势.

实际问题中求得的平均数,众数,中位数应带上单位.

第三步:随堂练习:

1、在一次环保知识竞赛中,某班50名学生成绩如下表所示:

得分5060708090100110120

人数2361415541

分别求出这些学生成绩的众数、中位数和平均数.

2、公园里有甲、乙两群游客正在做团体游戏,两群游客的`年龄如下:(单位:岁)

甲群:13、13、14、15、15、15、16、17、17。

乙群:3、4、4、5、5、6、6、54、57。

(1)、甲群游客的平均年龄是岁,中位数是岁,众数是岁,其中能较好反映甲群游客年龄特征的是。

(2)、乙群游客的平均年龄是岁,中位数是岁,众数是岁。其中能较好反映乙群游客年龄特征的是。

答案:1.众数90中位数85平均数84.6

2.(1)15、15、15、众数(2).15、5.5、6、中位数

第四步:课后练习:

1、某公司的33名职工的月工资(以元为单位)如下:

职员董事长副董事长董事总经理经理管理员职员

人数11215320

工资5500500035003000250020001500

(1)、求该公司职员月工资的平均数、中位数、众数?

(2)、假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是什么?(精确到元)

(3)、你认为应该使用平均数和中位数中哪一个来描述该公司职工的工资水平?

2、某公司有15名员工,它们所在的部门及相应每人所创的年利润如下表示

中位数和众数教案2

一 、教学目标

1.在实际情境中,认识并会求一组数据的中位数、众数,并解释其实际意义。

2. 根据具体的问题,能正确选择运用平均数、中位数或众数。

3.感受统计在生活中的应用,增强统计意识,发展统计观念。

二、教学重点、难点

1. 教学重点:会求一组数据的中位数、众数。

2. 教学难点:能正确选择运用平均数、中位数或众数。

三、教学活动

(一)基础训练

1.口算下列各题

128+92 34+48 800+750 396÷12 850÷4 57÷2

2.只列式不计算

(二)创设情景,谈话引入

1.师生谈话引入

师:同学们这么小就充满爱心,要为祖国献爱心,那你们长大后想当什么呢? 学生自主回答,说出自己的志愿,老师及时给与评价。

师:看来你们每个人都有自己的想法,为了实现你们的理想,一定要从小做起加倍努力呀!老师想问你们一个问题,假如你现在刚刚大学毕业,在找工作时你应该关注什么?

生:关注公司的实力。

生:关注公司的工作环境。

生:我比较关注我的工资是多少?

师:是啊,工资的确是人们比较关注的一个条件,很多人在找工作时都要考虑这个问题。我的一位好朋友张明在求职的过程中就遇到了这方面的问题,我们一起来看一下。

2.出示招聘启示,指名读出。

招聘启示

本商场由于扩大规模,现招聘工作人员若干,月平均工资1000元,有意者请到经理处面谈。

多又惠超市

20xx年4月20日

师:从招聘启事中你能获得哪些信息?

生:月平均工资有1000元。

师:是啊!张明认为月平均工资1000元,待遇不错,于是来到这家公司。一个月后他拿到了650元的工资,觉得十分不满,他的工资水平远远低于1000元,

于是找到了经理。经理拿出了该公司工作人员月工资表,并再三强调月平均工资没有错,那么问题究竟出在哪呢?

3.师:大家认真观察这组数据,你发现了什么?

生:员工的工资全都低于1000元。

师:月平均工资1000元有没有错?

生:我算了一下,9个数的平均数是1000,月平均工资1000元没有错? 师:但大部分员工都没达到1000元,那问题出在哪里呢?

生:因为经理的工资高,所以把平均值拉高了。

小结:同学们分析得很有道理,由于平均数1000受到较大数据的影响,已经不能合理地反映这家公司工作人员工资一般水平了。

(三)、揭示问题,自主探究新知

1.中位数的定义

(1)引入中位数

师:再观察这组数据,你认为哪个数据最能代表员工工资的一般水平?自己先想一想,然后和你的同桌或其他同学交流一下。

(学生交流并汇报。)

生1:我认为是750元,因为它在中间更能表示员工工资的一般水平。 生2:我认为是7 ……此处隐藏11762个字……再充分地利用这组数据,引导学生发现一组数据中的众数可能有1、2个或可能没有,那样学生对众数的认识会更全面。中位数在学生的生活中运用不是很多,如何通过丰富的事例让学生感受到中位数和众数在生活中的意义和作用,还值得我们进一步去研究。

总之,整节课学生经历着在观察中思考,在思考中发现,在发现中争论,在争论中提升的过程。我们把课堂真正还给了学生,师生在共同的研讨、交流中感受数学学习的乐趣。

中位数和众数教案8

教学目标:

1.通过对数据的分析,会求中位数与众数,并能根据具体问题解释其实际意义。

2. 在发现问题、分析问题和解决问题的具体活动过程中培养学生探究意识和合作能力。

3.感受统计在生活中的应用,增强统计意识,养成严谨的科学态度和大胆探索创新的良好品质。

重点:会求中位数与众数,能结合情境理解这两个统计量的意义。

难点:能根据具体情境选择适当的统计量表示数的不同特征。

教学过程:

一、问题引入──骗人的平均数

教学活动一:师[课件演示]考考你:某次数学考试,婷婷得到78分。全班共30人,其他同学的成绩为1个100分,4个90分,22个80分,以及1个2分和1个10分。婷婷计算出全班的平均分为77分,所以婷婷告诉妈妈说,自己这次成绩在班上处于“中上水平”。

问题:婷婷的说法合理吗?为什么?

生(思考后)回答:合理。

师:请想一想,为什么合理?

生:因为婷婷的成绩78分高于全班的平均分77分。

师:引导:在班上30名学生中,少于78分的有多少?

生:有两个,1个2分和1个10分。

⑴ 将学生成绩按从高到底的顺序排列,30名学生中处于中间位置的是什么位置?处于中间位置的学生考试分数是多少分?假如要你要给他的考试分数(数据)命名,你会如何命名?并给它下定义?

⑵ 30名学生的考试分数中,哪一个分数出现的次数最多。假如要你给这个出现次数最多的分数命名,你又如何命名?并给它下定义?

生:情绪非常兴奋,思维非常活跃。按老师要求进行排序、探究、讨论、解决上述三个问题。

师:巡视课堂,参与到学生的学习探究活动之中,与学生一起研究、讨论并指导部分学生的学习。

师:通过将30名学生成绩从低分到高分排序,处于中间位置的是什么位置? 生:处于中间位置的是15、16。

师:位置在15、16的学生的考试分数是多少?

生:都是80分。

师:根据以前学过的知识,你如何命名?

生:可命名为:中位数。

师:怎样定义中位数?

生:在一组数据中出现次数最多的数是众数。将一组数据按大小顺序排列,把处在中间的一个数(或两个数的`平均数)叫这组数据的中位数。

师:为什么要补充中间两个数的平均数。

生:因为数据个数可能是偶数

师:在学生的考试分数中,哪一个分数出现的次数最多?你又如何给这个分数命名?

生:80分出现的次数最多,可命名为众数。

师:怎样定义众数?

生:在一组数据中出现次数最多的数是众数。

2.理性解读──认识本质特征

教学活动三:(分小组活动)

师:请同学们在反思活动二的基础上仔细阅读课本中对中位数、众数的定义,并将定义中的关键词找出来,指出定义的本质特征。解决下面问题[课件演示]:

⑴理解中位数概念:

①中位数的意义是什么?

②定义中为什么要分数据的个数是奇数和偶数?

③求中位数:首先应该做什么工作?然后做什么?特殊情况如何处理? ⑵解读众数概念:

①众数的意义是什么?

②求众数要注意观察什么?

生:细读、思考、找出定义中的关键词并与同组同学讨论交流。

师:抽查活动结果,并要求每个学习小组选代表汇报本组学习结果。

组1:我们对中位数概念的理解是:

生1:①中位数的意义是:一组数据按顺序排列后中间位置上的数值。

生2:补充:强调顺序、位置关系。

生3:任何一组数据的个数有奇数个和偶数个两种可能。

生4:求中位数,首先是将数据从大到小(或从小到大)排序,然后确定数据个数的奇偶性;当数据个数是奇数个时,则处于中间位置的数称为这组数据的中位数,当数据个数是偶数个时,求中间两个数据的平均数。

组2:众数概念的理解是:

生1:众数的意义是:在一组数据中出现次数最多的数是众数。

生2:补充:众数只和一个数据出现的次数有关,与位置无关。

三、巩固新知──解决实际问题

1.运用新知──树立学习信心

练习 [课件演示]:求下列数据的平均数、中位数和众数。

⑴ 1 2 2 2 3

⑵ 5 3 2 3 2

⑶ 3 -2 5 9 -1 4

生:独立练习。

师:提问、讲评。

生1:数据⑴:平均数是2;中位数是2;众数是2。

生2:数据⑵:平均数是3;中位数是2,众数是2和3。

生3:不对。不对,中位数不是2。

师:为什么?

生3:没有排序。要先排序为:2、2、3、3、5,所以中位数是3。

生4:数据⑶:平均数是3;中位数是3.5;没有众数。

师:观察上面的解题结果,你发现了什么?

中位数和众数教案9

一、教学目标

1、认识中位数和众数,并会求出一组数据中的众数和中位数。

2、理解中位数和众数的意义和作用。它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。

3、会利用中位数、众数分析数据信息做出决策。

二、重点、难点和难点的突破方法:

1、重点:认识中位数、众数这两种数据代表

2、难点:利用中位数、众数分析数据信息做出决策。

3、难点的突破方法:

首先应交待清楚中位数和众数意义和作用:

中位数仅与数据的排列位置有关,某些数据的变动对中位数没有影响,中位数可能出现在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势。众数是当一组数据中某一重复出现次数较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的'计算很少不受极端值的影响。

教学过程中注重双基,一定要使学生能够很好的掌握中位数和众数的求法,求中位数的步骤:⑴将数据由小到大(或由大到小)排列,⑵数清数据个数是奇数还是偶数,如果数据个数为奇数则取中间的数,如果数据个数为偶数,则取中间位置两数的平均值作为中位数。求众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据。

《中位数和众数教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式