
《一元二次方程的应用》教案
在教学工作者实际的教学活动中,编写教案是必不可少的,教案是教学活动的总的组织纲领和行动方案。写教案需要注意哪些格式呢?以下是小编整理的《一元二次方程的应用》教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
《一元二次方程的应用》教案1一、素质教育目标
(一)知识教学点:使学生会用列一元二次方程的方法解决有关增长率问题.
(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生用数学的意识.
二、教学重点、难点
1.教学重点:学会用列方程的方法解决有关增长率问题.
2.教学难点:有关增长率之间的数量关系.下列词语的异同;增长,增长了,增长到;扩大,扩大到,扩大了.
三、教学步骤
(一)明确目标.
(二)整体感知
(三)重点、难点的学习和目标完成过程
1.复习提问
(1)原产量+增产量=实际产量.
(2)单位时间增产量=原产量×增长率.
(3)实际产量=原产量×(1+增长率).
2.例1 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增长的百分率是多少?
分析:设平均每月的增长率为x.
则2月份的产量是5000+5000x=5000(1+x)(吨).
3月份的产量是[5000(1+x)+5000(1+x)x]
=5000(1+x)2(吨).
解:设平均每月的增长率为x,据题意得:
5000(1+x)2=7200
(1+x)2=1。44
1+x=±1。2.
x1=0。2,x2=-2。2(不合题意,舍去).
取x=0。2=20%.
教师引导,点拨、板书,学生回答.
注意以下几个问题:
(1)为计算简便、直接求得,可以直接设增长的百分率为x.
(2)认真审题,弄清基数,增长了,增长到等词语的关系.
(3)用直接开平方法做简单,不要将括号打开.
练习1.教材P。42中5.
学生分析题意,板书,笔答,评价.
练习2.若设每年平均增长的百分数为x,分别列出下面几个问题的方程.
(1)某工厂用二年时间把总产值增加到原来的b倍,求每年平均增长的百分率.
(1+x)2=b(把原来的总产值看作是1.)
(2)某工厂用两年时间把总产值由a万元增加到b万元,求每年平均增长的百分数.
(a(1+x)2=b)
(3)某工厂用两年时间把总产值增加了原来的b倍,求每年增长的百分数.
((1+x)2=b+1把原来的总产值看作是1.)
以上学生回答,教师点拨.引导学生总结下面的规律:
设某产量原来的.产值是a,平均每次增长的百分率为x,则增长一次后的产值为a(1+x),增长两次后的产值为a(1+x)2 ,…………增长n次后的产值为S=a(1+x)n.
规律的得出,使学生对此类问题能居高临下,同时培养学生的探索精神和创造能力.
例2 某产品原来每件600元,由于连续两次降价,现价为384元,如果两个降价的百分数相同,求每次降价百分之几?
分析:设每次降价为x.
第一次降价后,每件为600-600x=600(1-x)(元).
第二次降价后,每件为600(1-x)-600(1-x)x
=600(1-x)2(元).
解:设每次降价为x,据题意得
600(1-x)2=384.
答:平均每次降价为20%.
教师引导学生分析完毕,学生板书,笔答,评价,对比,总结.
引导学生对比“增长”、“下降”的区别.如果设平均每次增长或下降为x,则产值a经过两次增长或下降到b,可列式为a(1+x)2=b(或a(1-x)2=b).
(四)总结、扩展
1.善于将实际问题转化为数学问题,严格审题,弄清各数据相互关系,正确布列方程.培养学生用数学的意识以及渗透转化和方程的思想方法.
2.在解方程时,注意巧算;注意方程两根的取舍问题.
3.我们只学习一元一次方程,一元二次方程的解法,所以只求到两年的增长率.3年、4年……,n年,应该说按照规律我们可以列出方程,随着知识的增加,我们也将会解这些方程.
四、布置作业
教材P。42中A8
五、板书设计
12。6 一元二次方程应用(三)
1.数量关系:例1……例2……
(1)原产量+增产量=实际产量分析:……分析……
(2)单位时间增产量=原产量×增长率解……解……
(3)实际产量=原产量(1+增长率)
2.最后产值、基数、平均增长率、时间
的基本关系:
M=m(1+x)n n为时间
M为最后产量,m为基数,x为平均增长率
12.6 一元二次方程的应用(三)
一、素质教育目标
(一)知识教学点:使学生会用列一元二次方程的方法解决有关增长率问题.
(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生用数学的意识.
二、教学重点、难点
1.教学重点:学会用列方程的方法解决有关增长率问题.
2.教学难点:有关增长率之间的数量关系.下列词语的异同;增长,增长了,增长到;扩大,扩大到,扩大了.
三、教学步骤
(一)明确目标.
(二)整体感知
(三)重点、难点的学习和目标完成过程
1.复习提问
(1)原产量+增产量=实际产量.
(2)单位时间增产量=原产量×增长率.
(3)实际产量=原产量×(1+增长率).
2.例1 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增长的百分率是多少?
分析:设平均每月的增长率为x.
则2月份的产量是5000+5000x=5000(1+x)(吨).
3月份的产量是[5000(1+x)+5000(1+x)x]
=5000(1+x)2(吨).
解:设平均每月的增长率为x,据题意得:
5000(1+x)2=7200
……此处隐藏1905个字……p>以上分析,解答,教师引导,板书,学生回答,体会,评价。注意:在求得解之后,要进行实际题意的检验。
练习1 有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数。(35)
教师引导,启发,学生笔答,板书,评价,体会。
四、布置作业
教材P42A 1、2
补充:一个两位数,其两位数字的差为5,把个位数字与十位数字调换后所得的数与原数之积为976,求这个两位数。
五、板书设计
探究活动
将进货单价为40元的商品按50元售出时,能卖500个,已知该商品每涨价1元时,其销售量就减少10个,为了赚8000元利润,售价应定为多少,这时应进货为多少个?
参考答案:
精析:此题属于经营问题.设商品单价为(50+)元,则每个商品得利润元,因每涨1元,其销售量会减少10个,则每个涨价元,其销售量会减少10个,故销售量为(500)个,为赚得8000元利润,则应有(500).故有=8000
当时,50+=60,500=400
当时,50+=80,500=200
所以,要想赚8000元,若售价为60元,则进货量应为400个,若售价为80元,则进货量应为200个.
《一元二次方程的应用》教案4一、教材
1. 教学内容:
本节课是北师大版九年级上第二章第五小节第一课时。内容是一元二次方程在几何和实际生活中的应用。
2. 本节课在教材中所处的地位和作用:
《 一元二次方程》 这一章是前面所学知识的继续和发展,尤其是一元一次方程、二元一次方程(组)等内容的深入和发展,是方程知识的综合运用。学好这部分知识,为九下学习一元二次函数知识打下扎实的基础,是后继学习的前提。而本节内容是一元二次方程的实际应用,是一元二次方程的最后部分。当然,尽管是最后一部分内容,但在本章的2~4节探索医院二次方程解法的过程中已经涉及到了一些关于一元二次方程的应用题,因此学生对此并不陌生,已经积累了一定的经验。
3. 教学目标
(1)经历分析具体问题中的数量关系,建立方程模型并解决问题的过程,认识方程模型的重要性,并总结运用方程解决实际问题的一般步骤。
(2)通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力。
4. 教材的重点:掌握运用方程解决实际问题的方法。
5. 教材的难点:建立方程模型。
二、教法:
选取现实生活中的题材,调动兴趣,探索、解决问题,讲练结合。
三、学法:
通过阅读细化问题、逐步解决问题
四、教学过程:
(一)导入新课,隐射教学目标
1. 观察图片: 古埃及胡夫金字塔,古希腊巴特农神庙,上海东方明珠电视塔,它们都是古今中外历史上著名的`建筑,在这些建筑的设计上都运用到了数学一个很奇妙的知识——黄金分割。
2. 释疑: 你想知道黄金分割中的黄金比是怎样求出来的吗?如图,点C把线段AB分成两条线段AC和BC,如果_______________那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比称为黄金比(0.618)。黄金比为什么等于0.618 ?方程能帮助我们解决这个问题吗? 让我们一起来做一做。 解:由=,得AC2=AB·CB 设AB=1, AC=x ,则CB=1-x ,代入上式, x2=1×(1-x) 即:x2+x-1=0 解这个方程,得 x1= , x2=(不合题意,舍去) 所以:黄金比=≈0.618
(二) 一元二次方程还能解决什么问题? 例1:如图,某海军基地位于A处,在其正南方向200海里处有一目标B,在B的正东方向200海里处有一重要目标C.小岛D位于AC的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向。一艘军舰沿A出发,经B到C匀速巡航,一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰。 (1)小岛D和小岛F相距多少海里?
(2)已知军舰的速度是补给船的2倍,军舰在 由B到C的途中与补给船相遇于E处,那么相 遇时补给船航行了多少海里?(结果精确到0.1海里) 『分析』(设置一些小问题):
①你能在图中找到表示小岛F的点吗?在本题中, 实际要求的是什么?
②这是一个路程问题,路程=____________×___________。 在本题中,从出发到相遇,军舰、补给船的航线路线分别是图中的哪些线段?两艘船的时间、速度、路程已知吗?两艘船的时间、速度、路程各有什么关系?
③你能用含有一个未知数的代数式来表示军舰和补给船各自的路程吗?
④你能借助图中的特殊图形解决本题的两个问题吗? 解:
(1)连接DF,则DF⊥BC, ∵AB⊥BC,AB=BC=200海里 ∴AC=AB=200海里,∠C=45° ∴CD=AC=100海里 DF=CF,DF=CD ∴DF=CF=CD=×100=100海里 所以,小岛D和小岛F相距100海里。
(2)设相遇时补给船航行了x海里,那么DE=x海里,AB+BE=2x海里 EF=AB+BC―(AB+BE)―CF=(300―2x)海里 在Rt△DEF中,根据勾股定理可得方程:x2=1002+(300-2x)2 整理得, 3x2-1200x+100000=0 解这个方程,得:x1=200-≈118.4 x2=200+(不合题意,舍去) 所以,相遇时,补给船大约航行了118.4 海里。 这部分教学设计意图: 通过前面的学习,学生对一元二次方程在实际问题中的应用已经有了一定的了解,在本课的学习中,我们联系实际选取例题,通过这个例题详细展示了应用题的分析方法、解题过程,要求学生能用自己的语言归纳解题的一般步骤,从而培养学生的阅读能力、建立方程模型解决实际问题的能力。
(三)练一练 例2:如图,在Rt△ABC中,∠C=90°,点P,Q同时由A,B两点出发,分别沿AC,BC方向向点C匀速移动,它们的速度都是1/s.几秒后△PCQ的面积是Rt△ACB面积的一半? 『分析』(设置一些小问题):
①本题同样涉及的是行程问题,在本题中,时间、速度、 路程这三个量哪些是已知的?哪些是未知的?通过假设 未知数,你能将各未知量表示出来吗?未知量和已知之 间有什么关系?未知量与未知量之间有什么关系?
②点P、Q的路程在右图中分别对应哪些线段?在右图中 你还能表示出哪些线段的长?问题中涉及的两个三角形的 面积分别该如何表示? 解:设x秒后,△PCD的面积是RT△ABC的一半, 由题意得: 整理得:
6.答: 答案也必需是完事的语句。 列方程解应用题的关键是:找等量关系,本题中找等量关系的方法是“图示法”,常用的方法还有“列表法”等。