
有理数的乘法教案
作为一名默默奉献的教育工作者,就不得不需要编写教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。那么教案应该怎么写才合适呢?以下是小编为大家收集的有理数的乘法教案,欢迎大家借鉴与参考,希望对大家有所帮助。
有理数的乘法教案1【教学目标】
1.熟练有理数乘法法则;
2.探索运用乘法运算律简化运算.
【对话探索设计】
〖探索1
你知道乘法的交换律和结合律吗?你会用字母表示它们吗?在有理数范围内,它们仍然成立吗?
〖阅读理解
乘法交换律和结合律(见P40)
〖探索2
下列计算若按顺序依次相乘怎样算? 用运算律为什么能简化运算?
(1)252004 (2) - 1999
〖探索3
运用运算律真的能节省时间吗?分两个大组,比一比:
计算(-198)
〖练习1
运用乘法交换律和结合律简化运算:
(1)1999125 (2) -1097
〖探索4
1.每千克大米1.60元,第一天购进3590千克,第二天又购进6410千克,两天一共要付多少钱?你知道这道题有哪两种算法吗?哪一种简便?
2.如右图,你会用两种方法求长方形ABCD的面积吗?
〖例题学习
P41.例5
〖作业
P41.练习
〖补充作业
1.计算(注意运用分配律简化运算):
(1)-6(100-); (2)(-12).
(2)2(-3)4(-5)(-6)789(-10);
(3) 2(-3)4(-5)(-6)0789(-10);
4.下列各式的积(幂)是正的还是负的?为什么?
(1)(-3)(-3)(-3)(-3)(-3).
5.运用乘法交换律和结合律简化运算:
(1)-98(-0.6); (2)-1999(-)()
【补充练习】
1.某地气象统计资料表明,高度每增加,气温就降低大约.现在地面气温是,则在的.高空的气温是多少?
2.运用分配律化简下列的式子:
(1)例3x+9x+x (2)13x-20x+5x;
=(3+9+1)x
=13x;
(3)12-9 (4)-z-7z-8z.
有理数的乘法教案2一、学情分析:
在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。由于学生已了解利用数轴表示加法运算过程,不太熟悉水位变化,故改为用数轴表示乘法运算过程。
二、课前准备
把学生按组间同质、组内异质分为10个小组,以便组内合作学习、组间竞争学习,形成良好的学习气氛。
三、教学目标
1、知识与技能目标
掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、能力与过程目标
经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、情感与态度目标
通过学生自己探索出法则,让学生获得成功的喜悦。
四、教学重点、难点
重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
五、教学过程
1、创设问题情景,激发学生的求知欲望,导入新课。
教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?
学生:26米。
教师:能写出算式吗?
学生:……
教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题(教师板书课题)
2、小组探索、归纳法则
(1)教师出示以下问题,学生以组为单位探索。
以原点为起点,规定向东的方向为正方向,向西的方向为负方向。
a.2×3
2看作向东运动2米,×3看作向原方向运动3次。
结果:向 运动 米
2×3=
b.-2×3
-2看作向西运动2米,×3看作向原方向运动3次。
结果:向 运动 米
-2×3=
c.2×(-3)
2看作向东运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
2×(-3)=
d.(-2)×(-3)
-2看作向西运动2米,×(-3)看作向反方向运动3次。
结果:向 运动 米
(-2)×(-3)=
e.被乘数是零或乘数是零,结果是人仍在原处。
(2)学生归纳法则
a.符号:在上述4个式子中,我们只看符号,有什么规律?
(+)×(+)=同号得
(-)×(+)=异号得
(+)×(-)=异号得
(-)×(-)=同号得
b.积的绝对值等于 。
c.任何数与零相乘,积仍为 。
(3)师生共同用文字叙述有理数乘法法则。
3、运用法则计算,巩固法则。
(1)教师按课本P75例1板书,要求学生述说每一步理由。
(2)引导学生观察、分析例1中(3)(4)小题两因数的关系,得出两个有理数互为倒数,它们的`积为 。
(3)学生做P76练习1(1)(3),教师评析。
(4)教师引导学生做P75例2,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。多个因数相乘,积的符号由 决定,当负因数个数有 ,积为 ;当负因数个数有 ,积为 ;只要有一个因数为零,积就为 。
4、讨论对比,使学生知识系统化。
有理数乘法有理数加法
同号得正取相同的符号
把绝对值相乘
(-2)×(-3)=6把绝对值相加
(-2)+(-3)=-5
异号得负取绝对值大的加数的符号
把绝对值相乘
(-2)×3=-6(-2)+3=1
用较大的绝对值减小的绝对值
任何数与零得零得任何数
5、分层作业,巩固提高。
六、教学反思:
本节课由情景引入,使学生迅速进入角色,很快投入到探究有理数乘法法则上来,提高了本节课的教学效率。在 ……此处隐藏12821个字……p>2、知识形成:
(引例)一只小虫沿一条东西向的'跑道,以每分钟3米的速度爬行。
情形1:小虫向东爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?
列式:
即:小虫位于原来出发位置的东方6米处
拓展:如果规定向东为正,向西为负
情形2:小虫向西爬行2分钟,那么它现在位于原来位置的哪个方向?相距出发地点多少米?
列式:
即:小虫位于原来出发位置的西方6米处
发现:当我们把中的一个因数3换成它的相反数-3时,所得的积是原来的积6的相反数-6
同理,如果我们把中的一个因数2换成它的相反数-2时,所得的积是原来的积6的相反数-6
概括:把一个因数换成它的相反数,所得的积是原来的积的相反数
3、设疑:
如果我们把中的一个因数2换成它的相
反数-2时,所得的积又会有什么变化?
当然,当其中的一个因数为0时,所得的积还是等于0。
综合:有理数乘法法则:
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数与零相乘,都得零。
例:计算:
(1)(2)
三、巩固训练:
P52.1、2、3
四、知识小结:
本节课从实际情形入手,对多种情形进行分析,从一般中找到规律,从而得到有关有理数乘法的运算法则。在运算中应强调注意如何正确得到积的结果。
五、家庭作业:
P57.1、2,3
六、每日预题:
1、小学多学过哪些乘法的运算律?
2、在对有理数的简便运算中,一般应考虑到哪些可能的情况?
有理数的乘法教案14教学目标
1.知识与技能
①经历探索有理数乘法法则的过程,发展观察、归纳、猜想、验证的能力.
②会进行有理数的乘法运算.
2.过程与方法
通过对问题的变式探索,培养观察、分析、抽象的能力.
3.情感、态度与价值观
通过观察、归纳、类比、推断获得数学猜想,体验数学活动中的探索性和创造性.
教学重点难点
重点:能按有理数乘法法则进行有理数乘法运算.
难点:含有负因数的.乘法.
教与学互动设计
(一)创设情境,导入新课
做一做 出示一组算式,请同学们用计算器计算并找出它们的规律.
例1 (1)(+5)(+3)=_______;(2)(+5)(-3)=________
(3)(-5)(+3)=________;(4)(-5)(-3)=________
例2 (1)(+6)(+4)=________;(2)(+6)(-4)=________
(3)(-6)(+4)=________;(4)(-6)(-4)=________
(二)合作交流,解读探究
想一想 你们发现积的符号与因数的符号之间的关系如何?
学生活动:计算、讨论
总结 一正一负的两个数的乘积为负;两正或两负的乘积是正数.
两数相乘,同号得正,异号得负.
想一想 两数相乘,积的绝对值是怎么得到的呢?
学生:是两因数的绝对值的积.
有理数的乘法教案15目标:
1、知识与技能
使学生理解有理数乘法的意义,掌握有理数的乘法法则,能熟练地进行有理数的乘法运算。
2、过程与方法
经历探索有理数乘法法则的过程,理解有理数乘法法则,发展观察、探究、合情推理等能力,会进行有理数和乘法运算。
重点、难点:
1、重点:有理数乘法法则。
2、难点:有理数乘法意义的理解,确定有理数乘法积的符号。
过程:
一、创设情景,导入新
1、由前面的学习我们知道,正数的加减法可以扩充到有理数的加减法,那么乘法是可也可以扩充呢?
乘法是加法的特殊运算,例如5+5+5=5×3,那么请思考:
(-5)+(-5)+(-5)与(-5)×3是否有相同的结果呢?本节我们就探究这个问题。
3、在一条由西向东的.笔直的马路上,取一点O,以向东的路程为正,则向西的路程为负,如果小玫从点O出发,以5千米的向西行走,那么经过3小时,她走了多远?
二、合作交流,解读探究
1、小学学过的乘法的意义是什么?
乘法的分配律:a×(b+c)=a×b+a×c
如果两个数的和为0,那么这两个数 互为相反数 。
2、由前面的问题3,根据小学学过的乘法意义,小玫向西一共走了 (5×3)千米,即(-5)×3=-(5×3)
3、学生活动:计算3×(-5)+3×5,注意运用简便运算
通过计算表明3×(-5)与3×5互为相反数,从而有
3×(-5)=-(3×5),由此看出,3×(-5)得负数,并且把绝对值3与5相乘。
类似的,(-5)×(-3)+(-5)×3=(-5)×[(-3)+3]=0
由此看出(-5)×(-3)得正数,并且把绝对值5与3相乘。
4、提出:从以上的运算中,你能总结出有理数的乘法法则吗?
鼓励学生自己归纳,并用自己的语舞衫歌扇,并与同伴交流。
在学生猜测、归纳、交流的过程中及时引导、肯定
两数相乘,同号得正,异号得负,绝对值相乘。
任何数与0相乘,积仍为0
(板书)有理数乘法法则:
三、应用迁移,巩固提高
1、计算
(-5)×(-4) 2×(-3.5) × (-0.75)×0
(1)学生根据乘法法则,在练习本上完成。指定四位同学到黑板演习。
(2)教师:要求学生明确算理,学生做练习时,教师巡视,及时引导。
2、计算下列各题
① (-4)×5×(-0.25) ② ×( )×(-2)
③ ×( )×0×( )
指定三名同学在黑板上做,使学生明确,做有理数的乘法时,要先确定积的符号,再求出积的绝对值。
教师提出问题:几个有理数相乘时,因数都不为0时,积是多少?
学生小结后,教师归纳:
几个不为0的有理数相乘,积的符号由负因数的符号决定,负因数有奇数个时,积为负;负因数有偶数个时,积为正;只要有一个因数为0,则积为0
练习:本P31练习
四、总结反思(学生先小结)
1、有理数乘法法则
2、有理数乘法的一般步骤是:
(1)确定积的符号; (2)把绝对值相乘。
五、作业:P39习题1.5 A组 1、2