当前位置:首页 > 教学范文 > 教案

《二次函数》教案

时间:2023-02-21 12:05:11 收藏本文
《二次函数》教案

《二次函数》教案

作为一名为他人授业解惑的教育工作者,通常会被要求编写教案,教案是教学活动的总的组织纲领和行动方案。那么大家知道正规的教案是怎么写的吗?以下是小编为大家收集的《二次函数》教案,欢迎大家分享。

《二次函数》教案1

【知识与技能】

1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式.

2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围.

【过程与方法】

经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系.

【情感态度】

体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识.

【教学重点】

二次函数的.概念.

【教学难点】

在实际问题中,会写简单变量之间的二次函数关系式教学过程.

一、情境导入,初步认识

1.教材P2“动脑筋”中的两个问题:矩形植物园的面积S(2)与相邻于围墙面的每一面墙的长度x()的关系式是S=-2x2+100x,(0

2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有.

二、思考探究,获取新知

二次函数的概念及一般形式

在上述学生回答后,教师给出二次函数的定义:一般地,形如=ax2+bx+c(a,

b,c是常数,a≠0)的函数,叫做二次函数,其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项.

注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出.

《二次函数》教案2

一、教学目标

1.知识与技能目标:

⑴。使学生理解并掌握二次例函数的概念

⑵。能判断一个给定的函数是否为二次例函数,并会用待定系数法求函数解析式

⑶。能根据实际问题中的条件确定二次例函数的解析式,体会函数的模型思想

2.过程与方法目标;

通过探究----感悟----练习,采用探究、讨论等方法进行。

3.情感态度与价值观:

通过对几个特殊的二次函数的讲解,向学生进行一般与特殊的辩证唯物主义教育

二、教学重、难点

1.重点:理解二次例函数的概念,能根据已知条件写出函数解析式

2.难点:理解二次例函数的'概念。

三、教学过程

1、知识回顾

⑴。一元二次方程的一般形式是什么?

⑵。回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的

2、合作学习,探索新知 :

问题1: 正方体的六个面是全等的正方形,如果正方形的棱长为x,表面积为y,那么y与x的关系可表示为?

《二次函数》教案3

  教学目标:

1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;

2. 2. 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;

3. 3. 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。

教学重点:二次函数的意义;会画二次函数图象。

教学难点:描点法画二次函数y=ax2的图象,数与形相互联系。

教学过程设计:

一. 创设情景、建模引入

我们已学习了正比例函数及一次函数,现在来看看下面几个例子:

1.写出圆的半径是R(CM),它的面积S(CM2)与R的关系式

答:S=πR2. ①

2.写出用总长为60M的篱笆围成矩形场地,矩形面积S(M2)与矩形一边长L(M)之间的'关系

答:S=L(30-L)=30L-L2 ②

分析:①②两个关系式中S与R、L之间是否存在函数关系?

S是否是R、L的一次函数?

由于①②两个关系式中S不是R、L的一次函数,那么S是R、L的什么函数呢?这样的函数大家能不能猜想一下它叫什么函数呢?

答:二次函数。

这一节课我们将研究二次函数的有关知识。(板书课题)

二. 归纳抽象、形成概念

一般地,如果y=ax2+bx+c(a,b,c是常数,a≠0) ,

那么,y叫做x的二次函数.

注意:(1)必须a≠0,否则就不是二次函数了.而b,c两数可以是零.(2) 由于二次函数的解析式是整式的形式,所以x的取值范围是任意实数.

练习:1.举例子:请同学举一些二次函数的例子,全班同学判断是否正确。

2.出难题:请同学给大家出示一个函数,请同学判断是否是二次函数。

(若学生考虑不全,教师给予补充。如: ; ; ; 的形式。)

(通过学生观察、归纳定义加深对概念的理解,既培养了学生的实践能力,有培养了学生的探究精神。并通过开放性的练习培养学生思维的发散性、开放性。题目用了一些人性化的词语,也增添了课堂的趣味性。)

由前面一次函数的学习,我们已经知道研究函数一般应按照定义、图象、性质、求解析式几个方面进行研究。二次函数我们也会按照定义、图象、性质、求解析式几个方面进行研究。

(在这里指出学习函数的一般方法,旨在及时进行学法指导;并将此方法形成技能,以指导今后的学习;进一步培养终身学习的能力。)

三. 尝试模仿、巩固提高

让我们先从最简单的二次函数y=ax2入手展开研究

1. 1. 尝试:大家知道一次函数的图象是一条直线,那么二次函数的图象是什么呢?

请同学们画出函数y=x2的图象。

(学生分别画图,教师巡视了解情况。)

《二次函数》教案4

〖大纲要求〗

1. 理解二次函数的概念;

2. 会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;

3. 会平移二次函数y=ax2(a≠0)的图象得到二次函数y=a(ax+m)2+k的图象,了解特殊与一般相互联系和转化的思想;

4. 会用待定系数法求二次函数的解析式;

5. 利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系,数学教案-二次函数。

内容

(1)二次函数及其图象

如果y=ax2+bx+c( ……此处隐藏12919个字……转化过程.

二、思考探究,获取新知

探究1 如何画y=ax2+bx+c图象,你可以归纳为哪几步?

学生回答、教师点评:

一般分为三步:

1.先用配方法求出y=ax2+bx+c的对称轴和顶点坐标.

2.列表,描点,连线画出对称轴右边的部分图象.

3.利用对称点,画出对称轴左边的部分图象.

探究2 二次函数y=ax2+bx+c图象的性质有哪些?你能试着归纳吗?

《二次函数》教案14

目标:

(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

重点难点:

能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

过程:

一、试一试

1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格 中,

AB长x(m)123456789

BC长(m)12

面积y(m2)48

2.x的值是否可以任意取?有限定范围吗?

3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,

对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。

对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。

对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.

二、提出问题

某商店将每 件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?

在这个问题中,可提出如下问题供学生思考并 回答:

1.商品的.利润与售价、进价以及销售量之间有什么关系?

2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多 少元?

3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?

4.x的值是否可以任意取?如果不能任意取,请求出它的范围,

5.若设该商品每天的利润为y元,求y与x的函数关系式。

将函数关系式y=x(20-2x)(0 <x <10=化为:

y=-2x2+20x (0<x<10)……………………………(1)

将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:

y =-100x2+100x+20D (0≤x≤2)……………………(2)

三、观察;概括

1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;

(1)函数关系式(1)和(2)的自变量各有几个?

(各有1个)

(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?

(分别是二次多项式 )

(3)函数关系式(1)和(2)有什么共同特点?

(都是用自变量的二次多项式来表示的)

(4)本章导图中的问题以及P1页的问题2有什么共同特点 ?

让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。

2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.

四、课堂练习

1.(口答)下列函数中,哪些是二次函数?

(1)y= 5x+1 (2)y=4x2-1

(3)y=2x3-3x2 (4)y=5x4-3x+1

2.P3练习第1,2题。

五、小结

1.请叙述二次函数的定义.

2,许多实际问题可以转化为二次函数来解决,请你联系生活实 际,编一道二次函数应用题,并写出函数关系式。

《二次函数》教案15

通过学生的讨论,使学生更清楚以下事实:

(1)分解因式与整式的乘法是一种互逆关系;

(2)分解因式的结果要以积的形式表示;

(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式 的次数;

(4)必须分解到每个多项式不能再分解为止。

活动5:应用新知

例题学习:

P166例1、例2(略)

在教师的引导下,学生应用提公因式法共同完成例题。

让学生进一步理解提公因式法进行因式分解。

活动6:课堂练习

1.P167练习;

2. 看谁连得准

x2-y2 (x+1)2

9-25 x 2 y(x -y)

x 2+2x+1 (3-5 x)(3+5 x)

xy-y2 (x+y)(x-y)

3.下列哪些变形是因式分解,为什么?

(1)(a+3)(a -3)= a 2-9

(2)a 2-4=( a +2)( a -2)

(3)a 2-b2+1=( a +b)( a -b)+1

(4)2πR+2πr=2π(R+r)

学生自主完成练习。

通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。

活动7:课堂小结

从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?

学生发言。

通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的`互逆关系,加深对类比的数学思想的理解。

活动8:课后作业

课本P170习题的第1、4大题。

学生自主完成

通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。

板书设计(需要一直留在黑板上主板书)

15.4.1提公因式法 例题

1.因式分解的定义

2.提公因式法

《《二次函数》教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式