
《一元一次不等式组》教案
在教学工作者实际的教学活动中,有必要进行细致的教案准备工作,教案是备课向课堂教学转化的关节点。教案要怎么写呢?下面是小编为大家整理的《一元一次不等式组》教案,欢迎阅读与收藏。
《一元一次不等式组》教案1教学建议
一、知识结构
本书首先结合实例引入一元一次不等式组的解集的概念,然后通过三个例题说明利用数轴解一元一次不等式组的方法,最后对一元一次不等式组的解法步骤进行了总结.
二、重点、难点分析
本节教学的重点是掌握一元一次不等式组的解法步骤并准确地求出解集.难点是正确应用不等式的基本性质对不等式进行变形、求不等式组中各个不等式解集的公共部分.不等式在中学代数中是研究问题的重要工具,例如求函数的定义域、值域、研究函数的单调性,求最大值、最小值,一元二次方程根的讨论等,都要用到不等式的知识.不等式也是进一步学习其他数学内容的基础.学习和掌握不等式的求解和不等式的证明方法,对培养学生逻辑思维能力也有极其重要的作用.在处理解不等式的问题中,一元一次不等式组的解法,具有特别重要的意义.这是因为,解各类不等式的问题都可以归结为解一些由简单不等式所组成的不等式组.
1、在构成不等式组的几个不等式中
①这几个一元一次不等式必须含有同一个未知数;
②这里的“几个”并未确定不等式的个数,只要不是一个,两个,三个,四个……都行.
2、当几个不等式的解集没有公共部分时,我们就说这个不等式组无解.
3、由两个一元一次不等式组成的不等式的解集,共归结为下面四种基本情况:
【注意】①其中第(4)个不等式组,实质上是矛盾不等式组,任何数都不能使两个不等式同时成立。所以说这个不等式组无解或说其解集为空集。②从上面列出的表中,我们可以概括出来不等式组公共解的一规律:同大取大,同小取小,一大一小中间找。
三、教法建议
1.解本节的引例及例1、例2、例3时,注意把解不等式组的思路讲清楚,即先分别解每一个不等式,求出解集,再求这些解集的公共部分.求公共部分的过程一定要结合数轴来讲。
2.这节课的讲解自始至终要突出解不等式组的基本思想以及解一元一次不等式组的步骤这两个重点.准确熟练地解一元一次不等式以及用数轴上的点表示不等式的解集是这节课的基础,因此讲新课之前要复习提问这些内容。
3.求公共解集是这节课的新授内容,教师要充分利用数轴表示不等式解集具有形象、直观、易于说明问题这些优点.解集的公共部分教师可用彩笔在数轴的相应部分描画出来,使学生感到醒目,便于理解记忆。
4.每组不等式不要超过三个,关键是使学生理解和掌握解不等式组的基本思想和两个步骤,不宜做过于难、过于多、重复的机械计算。
《一元一次不等式组》教案2学习目标:
1、了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义。
2、会解由两个一元一次不等式组成的一元一次不等式组,能借助数轴正确的表示一元一次不等式组的解集。
3、通过探讨一元一次不等式组的解法以及解集的确定,渗透转化思想,进一步感受数形结合在解决问题中的作用。
4、体验不等式在实际问题中的作用,感受数学的应用价值。
学习重点:
一元一次不等式组的解法
学习难点:
一元一次不等式组解集的确定。
一、学前准备
【回顾】
1.解不等式 ,并把解集在数轴上表示出来。
【预习】
1、 认真阅读教材34-35页内容
2、__________叫做一元一次不等式组。
_________叫做一元一次不等式组的解集。
叫做解不等式组。
4、求下列两个不等式的解集,并在同一条数轴上表示出来
二、探究活动
【例题分析】
例1. (问题1)题中的买5筒钱不够,买4筒钱又多的含义是什么?
例2. (问题2)题中的相等关系是什么?不等关系又是什么?
例3. 解不等式组
【小结】
不等式组解集口诀
同大取大,同小取小,大小小大中间找,大大小小解不了
一元一次不等式组解集四种类型如下表:
不等式组(a)
(1)xb
xb 同大取大
(2)x
x
(3)xax
a
(4)xb
无解 大大小小解不了
【课堂检测】
1、不等式组 的解集是( )
A. B. C. D.无解
2、不等式组 的解集为( )
A.-1
3、不等式组 的解集在数轴上表示正确的是( )
A B C D
4、写出下列不等式组的解集:(教材P35练习1)
三、自我测试
1.填空
(1)不等式组x-1 的解集是___;
(2)不等式组x-2 的解集 ;
(3)不等式组x1 的解集是____;
(4)不等式组x-4 解集是____。
2、解下列不等式组,并在数轴上表示出来
四、应用与拓展
若不等式组 无解,则m的取值范围是 _____.
《一元一次不等式组》教案3一、素质教育目标
(一)知识教学点
1.理解一元一次不等式组解集的概念,会利用数轴较简单的一元一次不等式组。
2.掌握一元一次不等式组解集的几种情况。
(二)能力训练点
通过利用数轴解不等式组,培养学生的观察能力、分析能力、归纳总结能力。
(三)德育渗透点
通过不等式组解集的求法,培养学生的观察与分析能力,渗透辩证唯物主义的观点。
(四)美育渗透点
用数轴求不等式组的解集,渗透用数学图形解题的直观性、简捷性的数学美。
二、学法引导
1.教学方法:引导发现法、观察法、归纳总结法。
2.学生学法:学会利用数轴将两个不等式的解集表示出来,并观察出其公共部分,再小结出不等式组的解集。
三、重点·难点·疑点及解决办法
(一)重点
理解一元一次不等式组解集的概念,会用数轴表示一元一次不等式组解集的几种情况。
(二)难点
正确理解一元一次不等式组解集的含义。
(三)疑点
弄清一元一次不等式解集和不等式组的解 ……此处隐藏941个字……等于97.现在小王要老师猜猜他和他弟弟的年龄各是多少?俗话说三个臭皮匠,可抵一个诸葛亮,现在我们全班同学可抵得上很多诸葛亮,所以老师相信大家一定有办法的.
二、夏耘(师生互动,课堂探究)
(一)提出问题,引发讨论
当一个未知数同时满足几个不等关系时,我们就按这些关系分别列几个不等式,这样就得到不等式组,用不等式组解决实际问题时,其公共解是否一定为实际问题的解呢?请举例说明.
例:甲以5km/时的速度进行跑步锻炼,2小时后,乙骑自行车从同地出发沿同一条路追赶甲.但他们两人约定,乙最快不早于1小时追上甲,最慢不晚于1小时15分追上甲.你能确定乙骑车的速度应当控制在什么范围吗?
(二)导入知识,解释疑难
1.教材内容讲解
如课本例2(P145)(请同学自己阅读,动手列不等式组进行求解,再将自己答案与课本答案进行比较)不等式组的解集为15
又如:将若干只鸡放入若干个笼,若每个笼里放4只,则有1只鸡无笼可放;若每个笼里放5只,则有1笼无鸡可放,那么至少有多少只鸡,多少个笼?
2.探究活动
把16根火柴首尾相接,围成一个长方形(不包括正方形),怎样找到围出不同形状的长方形个数最多的办法呢?最多个数又是多少呢?
三.秋收(归纳总结,知识回顾)
1. 应用不等式组解决实际问题的步骤:1.审清题意;2.设未知数,根据所设未知数列出不等式组;3.解不等式组;4.由不等式组的解确立实际问题的解;5.作答.(与列方程组解应用题进行比较)
2.双基练习
1.已知方程组 有正整数解,则k的取值范围是_________.
2.若不等式组 无解,求a的取值范围.
3.当2(m-3)< 时,求关于x的不等式 >x-m的解集.
4.某学校为学生安排宿舍,现有住房若干间,若每间5人还有14人安排不下,若每间7人,则有一间还余一些床位,问学校有几间房可以安排学生住宿?可以安排住宿的学生多少人?
四.冬藏(创新提升)
某商场为了促销,开展对顾客赠送礼品活动,准备了若干件礼品送给顾客,在一次活动中,如果每人送5件,则还余8件,如果每人送7件,则最后一人还不足3件.设该商场准备了m件礼品,有x名顾客获赠,请回答下列问题:
(1)用含x的代数式表示m.
(2)求出该次活动中获赠顾客人数及所准备的礼品数
《一元一次不等式组》教案6〖教学目标〗
1、理解一元一次不等式组的概念.
2、理解不等式组的解的概念.
3、会解由两个一元一次不等式组成的不等式组,并会用数轴确定解.
4、培养学生类比推理能力.
〖教学重点与难点〗
教学重点:一元一次不等式组的解法.
教学难点:例2较为复杂,几乎包括了解一元一次不等式的全部步骤,是本节教学的难点,用数轴表示一元一次不等式组的解也是难点。
〖教学过程〗
一.引入
1.想一想:某单位从超市购买了墨水笔和圆珠笔共15桶,所付金额超过570元,但不到580元。已知这两种笔每桶的单价为圆珠笔34.90元/支,墨水笔44.90元/支。设购买圆珠笔X桶,你能列出几个不等式?
2.学生活动:找出已知条件,列出所有不等关系式,互相讨论,类推概念,鼓励学生通过观察,分析,补充解决问题。
3.最后教师总结两个不等式。
如设购买圆珠笔的桶数为X,则:
二.新课
1.一元一次不等式组:一般地,由几个同一个未知数的一元一次不等式所组成的一组不等式,叫做一元一次不等式组。像上面就是一元一次不等式组,再
例如:
都是一元一次不等式组.
2.不等式组解的概念:组成不等式组的各个不等式的解的公共部分就是不等式组的解.当它们没有公共部分时.我们称这个不等式组无解.
3.做一做:
例1.解一元一次不等式组
解:解不等式①,
得:
X>-1
解不等式②,
得:
X≤6
把
①
②两个不等式的解表示在数轴上,如下图:
-1
6
所以原不等式组的解是-1
4.应用拓展:解由两个一元一次不等式组成的不等式组,在取各个不等式的解公共部分时,有几种不同情况吗?
若a
用数轴试一试.
(设a
一般由两个一元一次不等式组成的不等式组由四种基本类型确定,它们的解集、数轴表示如下表
一元一次
不等式组
解集
图示
口诀
x>a
x>b
x>b
大大取大
x
x
x
小小取小
x>a
x
a
比小大,比大小,中间找
x
x>b
无解
比小小,比大大,解不了(无解)
5.尝试反馈:试一试,利用数轴分别求出满足下列各组不等式组的x值的公共部分:
6.探索较复杂的不等式组的解法:
例2.
解一元一次不等式组
解:由不等式①,去扩号得
3-5X>X-4X+2
移项,整理得
-2X>-1
所以X<
解不等式②,去分母得
3X-2>10-2X
移项,整理得
5X>12
所以X>
把①,②两个不等式的解表示在数轴上.
1
2
所以原不等式组无解.
7.通过范例,帮助学生总结解一元一次不等式组的步骤:
(1)依次解各个一元一次不等式.
(2)把各个一元一次不等式的解分别表示在同一数轴上.
(3)根据解在数轴上的表示确定不等式组的解.
三.巩固
(学生活动,与同伴交流自己的问题和解决问题的过程)
1.解下列一元一次不等式组:
2.分别求出本节开头问题中购买墨水笔和圆珠笔的桶数
四.归纳
1.学生谈本节课的收获:优等生谈学到什么知识,上进生谈体会;
2.教师小结:这节课主要学习了一元一次不等式组及不等式组的解的有关概念,要求会解有两个一元一次不等式组成的一元一次不等式组,并会用数轴确定解集;也可以利用口诀“大大取大,小小取小,比小大比大小取中间,比大大比小小无解”来求不等式组的解。
五.布置作业