当前位置:首页 > 教学范文 > 教案

轴对称教案

时间:2021-10-18 02:25:35 收藏本文
轴对称教案

轴对称教案

作为一位无私奉献的人民教师,时常需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。我们该怎么去写教案呢?以下是小编为大家收集的轴对称教案,欢迎阅读,希望大家能够喜欢。

轴对称教案1

教学目标:

1、使学生初步认识生活中的对称现象,认识轴对称图形和对称轴;知道轴对称图形的含义,能判断一个图形是否是轴对称图形。

2、会根据轴对称图形的特点,找出相应的对称轴。

3、让学生体会理论来源于实践,又在实践中广泛运用这一道理。

4、培养学生的观察能力和动手操作能力。

教学重点:

掌握轴对称图形的特点,能判断一个图形是否是轴对称图形。

教学难点:

会找出轴对称图形的对称轴。

教学准备:

多媒体课件,剪纸

学具准备:

长方形纸一张、剪刀、

教学过程:

一.情景欣赏:

师:同学们,老师今天给大家带来了一些的图片,请大家欣赏,在欣赏的同时观察这些图片有什么特点。

1.屏幕出现图片

(1)自然景观图片

师:这景色美吗?

生:美

师:大自然的景色很美,而且还很有特点,聪明的设计师和能工巧匠利用大自然的特点设计和建造了一些美丽的建筑。

(2)轴对称建筑图片

师:你看到的图形有什么特点?

生:有,有的左右一样,有的上下一样。两边一样…

师:我们的生活中经常也可以看到具有这种特点的物体和图形。

(3)生活中的轴对称图片

师:剪纸是我国的民间艺术,历史悠久,流传广泛,它最能体现这种特点。

(4)剪纸图片

2、对图形进行概括:

师:你们所看到的这些图形都有什么特点?

生:有的左右一样,有的上下一样。两边一样,有一种对称美。

师:上面这些图形给我们一种对称美,这些图形都是轴对称图形。(板书课题 :轴对称图形 )轴对称这种特点在我们日常生活中,应用很广泛,到底什么样的图形是轴对称图形呢?这就是我们今天要研究的问题。

二.动手操作发现新知:

1、师:我们来做个实验,先看大屏幕老师怎么做

(演示课件。折纸------画图-----剪纸-----打开)

师:现在请大家拿出你手中的长方形纸和剪刀,向老师这样也剪出一个简单的图形。

2、学生操作(教师巡视指导)

师:通过剪纸,你发现了什么?

生:我发现了我这个图形的两边一样,中间还有一条折痕,

师:那你知道它是什么图形吗?

生:轴对称图形。

师:能用你的话说一说什么是轴对称图形?

3、揭示特征。

师:老师给大家再演示一下

演示课件,概括轴对称图形的概念。

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。 折痕所在的这条直线叫做对称轴

4、举例:

师:你能说一说生活中你见过哪些轴对称图形?

生:举例,师点评

师:同学们对什么是轴对称图形理解的非常好,现在我们在来研究一下我们学过的一些图形,看他们是不是轴对称图形。

三. 合作研讨探究(轴对称图形的探索与提高)(四人小组)

1.、把下面的图形剪下来折一折,看一看那些是轴对称图形?并画出他们的对称轴。

2,结论:课件演示

通过刚才剪一剪 ,折一折,画一画,你们又发现了什么?

师:通过合作研究,我们知道了这些图形中有的是轴对称图形,有的不是;有的轴对称图形只有一条对称轴,有的有两条,三条,四条,还有的有无数条对称轴。

四.巩固练习。

1、考考你的眼力

(1)下面的图形那些是轴对称图形?找出它们的对称轴。

师:不光这些几何图形是轴对称图形,我们学过的字母、数字、汉字有些也是轴对称图形。

(2)下面的字母。数字,汉字那些是轴对称图形?它们各有几条对称轴?

A C D E F T G H U

1 2 3 4 5 6 7 8 9

王 上 田 大 中 日 人 朋 两

2、.填一填

(1)、如果一个图形沿着( )对折,两侧的图形能够( )这个图形就是轴对称图形。折痕所在的这条直线叫做( )。

(2)、圆是( )图形,在同一圆里任何一条( )都是圆的对称轴。

(3)、等边三角形有( )条对称轴

3.、.判断

(1)扇形也是轴对称图形,它和圆一样也有无数条对称轴。 ( )

(2)平行四边形可分成两个完全一样的三角形,所以,平行四边形也有两条对称轴。( )

(3)圆上任意两点间的线段都是圆的对称轴。( )

(4)有两条对称轴的图形只有长方形。( )

5. 画出下面每组图形的对称轴.各能画几条?

五. 课堂小结:

1.通过这节课的学习你有什么收获?

2、结束语:

师:对称是一种美,是数学美在生活中的具体体现,希望大家能运用今天所学知识把我们生活装扮得更美丽、更精彩。谢谢同学们的合作,再见。

六.、板书设计:

轴对称图形

对折后能完全重合的图形是轴对称图形。

课后小记:

轴对称教案2

【预习指导】:

1观察、思考:

议一议:观察图片揭示轴对称概念:

像这样,把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线就是对称轴,两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点.

2、动手操作:

(1)演示操作

(2)用一张正方形的纸片,

折叠后,把下列图形剪出来,并与同学交流你的剪法.

3、探索思考:

观察图示轴对称图形概念:

如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.

自学情况在黑板上反馈出来。

(每组4人上黑板)

【典题选讲】:

指出下列图形中的轴对称图形,画出它们的对称轴.

是轴对称图形的是 (填写序号).

【学习体会】;

1、讨论 ……此处隐藏13094个字……p>

1.根据新课程课堂教学理念“教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验”.本节课的设计遵循了这一理念,注意通过折纸等丰富多彩的活动激发学生学习本课的积极性,注意让学生动手操作实践,在操作中进行自主探索和生生、师生互动交流,从而使学生能很好地掌握角平分线的性质,并获得用折纸这样的操作发现法探究图形性质的活动经验.

2.在本节课的教材内容处理上,既注意了教材是最基本的课程资源,它是满足所有七年级学生最基本的知识内容,又注意了我校学生的实际情况(学生比较优秀),因此,本节课突出了课程资源的开发,即对原有例题作了补充(如例2),又增加了反馈练习活动,让学生在议练中学会运用角平分线性质解决问题,同时还进行了思维拓展,这样充分体现了让不同的学生“在数学上得到不同的发展”的数学课程基本理念.

3.本节课在教法上选用了“探究——发现”教学模式,这是基于本节课的知识内容,有实践背景,适用于让学生动手操作探究.因此本节课在教学活动设计中,注意突出学生活动,设置了四个活动:①动手活动:通过动手度量、折纸等活动,探索角平分线的性质;②表述活动:用文字语言、图形语言、符号语言表述角平分线的性质,并互动说理证明;③应用活动:角平分线的性质的认识及应用;④拓展活动:结合本节课的知识,对线段的轴对称性进行探索.

4.教材中只给出了角平分线的性质的文字语言叙述,并没有给出符号语言的表述,由于我校的学生在第二章、第五章学习时,已经接触了符号语言的叙述,并且能够进行简单的说理,因此在这里,我引导学生将文字语言结合图形语言转化为符号语言,并且对性质进行了说理,同时在对性质说理以及例1的解答中,教师都给出了规范的说理过程,这样既符合学生的实际学习情况,又为后面学习证明(一)、(二)、(三)打下基础.

5.评价方式

根据课标的评价理念,教学中我关注了学生在学习过程中是否积极参与教学活动,是否能在教师的引导下进行说理,是否能应用所学知识来解决实际问题,并注意在教学过程中给予学生适当的评价和鼓励.

指导老师点评

任何数学老师都想上一堂优秀的数学课,优秀的数学老师想自己上的每一堂课都是优秀的,我们都想成为智慧型的数学老师。我们高兴的看到,郭老师给了我们很好的示范。

一、学生的发现

数学家乔治·伯利亚:“学任何知识的最佳途径是自己去发现,因为这种发现理解最省,也最容易了解其中的规律,性质和联系”。这里的发现就是在教师设定的在原有的知识的基础上产生新的问题,由学生去发现、去再创造。郭老师从学生最熟悉的工具(两个全等的30°的三角板)设置的拼图活动出发,从学生拼出的图形中我们可以看到很好地呈现了探索问题的情景,又为后边的学习新的轴对称和中心对称,做好了铺垫,起到了很好地承上启下作用,学生遵循着老师设置的问题,通过测量、折纸等活动去发现去探索,随着七个问题的提出与解决,知识在学生脑海中已基本形成,郭老师的情景和问题串的设置真是匠心独运。

二、知识的产生

发现结论是定理的初级阶段,如何让定理在学生头脑中形成可迁移的印记呢?郭老师通过“最大限度地给予学生表演的机会”、“指导学生阅读教材引”,引导学生用普通数学语言、几何语言、符号语言进行表述和转换,让我们看到了知识的产生其实就是数学语言的产生,三种数学语言的互化形成数学知识内化,在这个环节表现的生生互动,让我们感受到了知识就是在这样的交流,试错中完成的,什么叫水到渠成,由此可见一斑。

三、知识的运用

知识的掌握、能力的形成其实就是这个定理(基本模式)在较为复杂的图形中的识别与分离(例题1)、组合与补全(例题2),几何定理的运用就是基本图形的识别与补全,例题的选择是为了学生形成能力、能够迁移所必须具备的基本要素,郭老师在这两个例题的设置上让我们看到了一个优秀的数学老师的深厚功底,这里的精彩是看不见的,但思维的链条在学生头脑中已成雏形,我们从反馈练习的顺利完成就可以清楚看到这一点。

四、方法的拓展

最有价值的知识是方法,形成知识不是我们的最终目的,知识是形成方法的载体,知识的灵魂是方法,学生从前五个环节中学到了知识,形成了初步的方法(从操作中发现,在特殊中探索),但这种方法需要老师有意识地深化、延伸,探索线段轴对称性以及对称轴上一点到两端距离的关系,这个问题的设置看似简单,其实把握捉了本节的精华“从特殊到一般”的数学思想方法,使学生从单纯的解题方法的模仿发展到思维过程的模仿,提高了学生的思维质量。

数学课从本质上讲是简洁的:设置什么情景,怎样操作检验,讨论什么问题,明确什么结论,形成什么知识和方法。本节从操作中探索,探索中操作,在探索中深化,在操作中明辨,从操作开始到操作中拓展,把握住了核心,使数学的课堂教学真正落实到了学生的发展上——这就是我们每一位数学老师追求的优秀的数学课,也是每一节数学课都是优秀的标准。

轴对称教案15

一、学习目标:

1、经历对图形进行观察、分析、欣赏和动手操作、画图过程,掌握有关画图的操作技能,发展初步审美能力,增强对图形欣赏的意识。

2、能按要求把所给出的图形补成以某直线为轴的轴对称图形,能依据图形的轴对称关系设计轴对称图形。

二、学习重点:

本节课重点是掌握已知对称轴L和一个点,要画出点A关于L的轴对称点的画法,在此基础上掌握有关轴对称图形画图的操作技能,并能利用图形之间的轴对称关系来设计轴对称图形.

三、学习难点:

掌握有关画图的技能及设计轴对称图形是本节课的难点。

(一)预习准备

(1)预习书128~129页

思考:如何作轴对称图形

(2)预习作业:

补全下列图形,使它成为轴对称图案

(二)学习过程:

轴对称的性质:在轴对称图形中,

(1)对应点所连的线段被对称轴_______。(2)对应线段_______,对应角_______。

1.下图中给出了图案的一半,虚线是这个图案的对称轴.

(1)你能猜出整个图案的形状吗?(2)画出它的另一半,证实你的猜想.

2.如图,直线L是一个轴对称图形的对称轴,画出这个轴对称图形的另一半。

3.把下列各图补成以L为对称轴的轴对称图形.

拓展:

1.根据下列语句,用三角板、圆规或直尺作图,不要求写做法:

(1)过点C作直线MN∥AB;

(2)作△ABC的高CD

(3)以CD所在直线为对称轴,作与△ABC关于直线CD对称的△A′B′C′,并说明完成后的图形可能代表什么含义。

回顾小结:

本节课学习了已知对称轴L和一个点如何画出它的对应点,以及如何补全图形,并利用轴对称的性质知道如何设计轴对称图形。

《轴对称教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式